Matching Items (3)
Filtering by

Clear all filters

133592-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the fungus invades the skin and some resistant species show no signs of the characteristic cutaneous lesions, it seems likely that resistant species contain specific defense mechanisms within their skin, such as antimicrobial peptides (AMPs) and other immunologically relevant proteins expressed by specific cell types or as secreted soluble components. Proteomics could be a useful tool for understanding differences in susceptibility, and could help identify AMPs that could be synthesized and used as control agents against the spread of the causative fungus. This study is the first to optimize proteomics methods for bat wing tissues in order to compare the skin proteomes of species variably impacted by WNS, including those of two endangered species. Further tests are planned to investigate methods of increasing protein yield without altering the size of the tissue sample collected, as well as the analysis of mass spectrometry data from processed skin tissues of five bat species differentially affected by WNS.
ContributorsPatrose, Reena Paulene (Author) / Moore, Marianne (Thesis director) / Steele, Kelly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134956-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a cutaneous fungal infection caused by Pseudogymnoascus destructans (Pd) which was first observed in the United States in 2006. Pd infects bats during hibernation and leads to the development of cutaneous lesions and behavioral changes that can result in the animal's death. This study generated the

White-nose syndrome (WNS) is a cutaneous fungal infection caused by Pseudogymnoascus destructans (Pd) which was first observed in the United States in 2006. Pd infects bats during hibernation and leads to the development of cutaneous lesions and behavioral changes that can result in the animal's death. This study generated the first complete bat skin proteome for the WNS resistant gray bat (Myotis grisescens) to optimize sample preparation methods and identify immune proteins that may signal resistance. Wing tissue was collected from a female gray bat and processed in a Barocycler using 4M or 8M urea followed by an in-gel trypsin digestion of pooled samples and processing of separate samples without digestion specifically to capture and identify small antimicrobial peptides. Both undigested and digested samples were analyzed using a Thermo Fisher LTQ Orbitrap Velos mass spectrometer and interpreted using PEAKS software. A total of 29 immune proteins were identified including the antimicrobial peptide dermcidin. This method will be applied to a larger range of samples from five species variably impacted by WNS to compare skin proteomes with the aim of identifying immune proteins that are responsible for resistance at the barrier where Pd invades.
ContributorsBoone, Brianna Marie (Author) / Moore, Marianne (Thesis director) / Steele, Kelly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
165244-Thumbnail Image.png
Description
The study of broad therapeutic advantages of dance is a growing field of interdisciplinary study. Yet, direct health benefits of dance from a molecular standpoint are still largely unknown. Literature review of dance performance displays in birds as well as other creatures and use of creative tools to analyze the

The study of broad therapeutic advantages of dance is a growing field of interdisciplinary study. Yet, direct health benefits of dance from a molecular standpoint are still largely unknown. Literature review of dance performance displays in birds as well as other creatures and use of creative tools to analyze the diverse, lifelong experiences of dancers helped shed some light on the subject. Although dance experience exposes harms tied to the social constraints of how the form is experiences buried under joyful takeaways of dance, research supports overall health benefits from moderate amounts of dance maintained in perfect equilibrium.
ContributorsWilliams, Caroline (Author) / Fitzgerald, Mary (Thesis director) / Moore, Marianne (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2022-05