Matching Items (7)
Filtering by

Clear all filters

156031-Thumbnail Image.png
Description
Approximately 2.8 million Americans seek medical care for traumatic brain injury (TBI) each year. Of this population, the majority are sufferers of diffuse TBI, or concussion. It is unknown how many more individuals decline to seek medical care following mild TBI. This likely sizeable population of un- or self-treated individuals

Approximately 2.8 million Americans seek medical care for traumatic brain injury (TBI) each year. Of this population, the majority are sufferers of diffuse TBI, or concussion. It is unknown how many more individuals decline to seek medical care following mild TBI. This likely sizeable population of un- or self-treated individuals combined with a lack of definitive biomarkers or objective post-injury diagnostics creates a unique need for practical therapies among diffuse TBI sufferers. Practical therapies stand to decrease the burden of TBI among those who would otherwise not seek treatment or do not meet clinical diagnostic criteria upon examination. For this unique treatment niche, practical therapies for TBI are defined as having one or more of the following qualities: common availability, easy administration, excellent safety profile, and cost-effectiveness. This dissertation identifies and critically examines the efficacy of four classes of practical treatments in improving rodent outcome from experimental diffuse traumatic brain injury.

Over-the-counter (OTC) analgesics, omega-3 fatty acids, specialized pro-resolving mediators (SPMs), and remote ischemic conditioning (RIC) were administered before or following midline fluid percussion injury. Behavioral, histological, and molecular analyses were used to assess treatment effects on functional outcome and secondary injury progression. Acute administration of common OTC analgesics had little effect on post-injury outcome in mice. Dietary supplementation with omega-3 fatty acid docosahexaenoic acid (DHA) prior to or following diffuse TBI significantly reduced injury-induced sensory sensitivity and markers of neuroinflammation with no effect on spatial learning. Intraperitoneal administration of omega-3 fatty acid-derived SPM resolvin E1 significantly increased post-injury sleep and suppressed microglial activation. Aspirin-triggered (AT) resolvin D1 administration improved both motor and cognitive outcome following diffuse TBI. RIC treatment in mice demonstrated little effect on functional outcome from diffuse TBI. Untargeted proteomic analysis of plasma samples from RIC-treated mice was used to identify candidate molecular correlates of RIC. Identification of these candidates represents a vital first step in elucidating the neuroprotective mechanisms underlying RIC. The overall findings suggest that omega-3 fatty acid supplementation, SPM administration, and RIC may serve as effective practical therapies to reduce the somatic, cognitive, and neurological burden of diffuse TBI felt by millions of Americans.
ContributorsHarrison, Jordan L (Author) / Lifshitz, Jonathan (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Willyerd, Frederick A (Committee member) / Pirrotte, Patrick (Committee member) / Arizona State University (Publisher)
Created2017
136366-Thumbnail Image.png
Description
One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS.

One of the most prominent biological challenges for the field of drug delivery is the blood-brain barrier. This physiological system blocks the entry of or actively removes almost all small molecules into the central nervous system (CNS), including many drugs that could be used to treat diseases in the CNS. Previous studies have shown that activation of the adenosine receptor signaling pathway through the use of agonists has been demonstrated to increase BBB permeability. For example, regadenoson is an adenosine A2A receptor agonist that has been shown to disrupt the BBB and allow for increased drug uptake in the CNS. The goal of this study was to verify this property of regadenoson. We hypothesized that co-administration of regadenoson with a non-brain penetrant macromolecule would facilitate its entry into the central nervous system. To test this hypothesis, healthy mice were administered regadenoson or saline concomitantly with a fluorescent dextran solution. The brain tissue was either homogenized to measure quantity of fluorescent molecule, or cryosectioned for imaging with confocal fluorescence microscopy. These experiments did not identify any significant difference in the amount of fluorescence detected in the brain after regadenoson treatment. These results contradict those of previous studies and highlight potential differences in injection methodology, time windows, and properties of brain impermeant molecules.
ContributorsWohlleb, Gregory Michael (Author) / Sirianni, Rachael (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133530-Thumbnail Image.png
Description
Neuroinflammation is an important secondary injury response occurring after traumatic brain injury (TBI). Anxiety-like disorders are commonly exacerbated after TBI and are mediated through the amygdala; however, the amygdala remains understudied despite its important contribution in processing emotional and stressful stimuli. Therefore, we wanted to study neuroinflammation after experimental TBI

Neuroinflammation is an important secondary injury response occurring after traumatic brain injury (TBI). Anxiety-like disorders are commonly exacerbated after TBI and are mediated through the amygdala; however, the amygdala remains understudied despite its important contribution in processing emotional and stressful stimuli. Therefore, we wanted to study neuroinflammation after experimental TBI using midline fluid percussion in rodent models. We assessed microglia morphology over time post-injury in two circuit related nuclei of the amygdala, the basolateral amygdala (BLA) and central amygdala of the nucleus (CeA), using skeletal analysis. We also looked at silver staining and glial fibrillary acidic protein (GFAP) to evaluate the role of neuropathology and astrocytosis to evaluate for neuroinflammation in the amygdala. We hypothesized that experimental diffuse TBI leads to microglial activation in the BLA-CeA circuitry over time post-injury due to changes in microglial morphology and increased astrocytosis in the absence of neuropathology. Microglial cell count was found to decrease in the BLA at 1 DPI before returning to sham levels by 28 DPI. No change was found in the CeA. Microglial ramification (process length/cell and endpoints/cell) was found to decrease at 1DPI compared to sham in the CeA, but not in the BLA. Silver staining and GFAP immunoreactivity did not find any evidence of neurodegeneration or activated astrocytes in the respectively. Together, these data indicate that diffuse TBI does not necessarily lead to the same microglial response in the amygdala nuclei, although an alternative mechanism for a neuroinflammatory response in the CeA likely contributes to the widespread neuronal and circuit dysfunction that occurs after TBI.
ContributorsHur, Yerin (Author) / Newbern, Jason (Thesis director) / Thomas, Theresa Currier (Committee member) / Beitchman, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135467-Thumbnail Image.png
Description
Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay

Proper developmental fidelity ensures uninterrupted progression towards sexual maturity and species longevity. However, early development, the time-frame spanning infancy through adolescence, is a fragile state since organisms have limited mobility and responsiveness towards their environment. Previous studies have shown that damage during development leads to an onset of developmental delay which is proportional to the extent of damage accrued by the organism. In contrast, damage sustained in older organisms does not delay development in response to tissue damage. In the fruit fly, Drosophila melanogaster, damage to wing precursor tissues is associated with developmental retardation if damage is sustained in young larvae. No developmental delay is observed when damage is inflicted closer to pupariation time. Here we use microarray analysis to characterize the genomic response to injury in Drosophila melanogaster in young and old larvae. We also begin to develop tools to examine in more detail, the role that the neurotransmitter dopamine might play in mediating injury-induced developmental delays.
ContributorsContreras Rodriguez, Jesus (Co-author) / Lupone, Teresa (Co-author) / Beckett, Chaz (Co-author) / Almajan, Ashley (Co-author) / Leek, Ty (Co-author) / Hussain, Sabahat (Co-author) / Marsh, Tyler (Co-author) / Broatch, Jennifer (Co-author) / Hackney Price, Jennifer (Thesis director) / Sandrin, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation and inflammation. Furthermore, unfolded protein responses in vascular cells’ endoplasmic reticulum (ER), known as ER stress, have emerged as a potential downstream mechanism by which inflammatory EGFR activation may lead to aneurysm rupture. The purpose of this project was to investigate the role of EGFR inhibition on the aneurysm rupture rate in a preclinical model, investigate the role of ER stress induction on the aneurysm rupture rate, and confirm which cellular phenomenon lies upstream in this mechanistic cascade. Based on analyses of aneurysm rupture rate and gene expression in the Circle of Willis, ER stress and inflammatory unfolded protein responses were found to be downstream of initial EGFR activation, which may be an effective therapeutic target for preventing aneurysm rupture in a clinical setting.

ContributorsPolen, Kyle (Author) / Van Horn, Wade (Thesis director) / Martin, Thomas (Committee member) / Hashimoto, Tomoki (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-12