Matching Items (3)
Filtering by

Clear all filters

134584-Thumbnail Image.png
Description
There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated

There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated a portion of the methods of Clark et al. (2014) in an attempt to support the presence of these two fallacies in online simulated risky decision-making tasks. One hundred individuals were recruited and asked to perform one of two classic gambling tasks, either predict the outcome of a dichromatic roulette wheel or spin a simplified, two-reel slot machine. An analysis of color predictions as a function of run length revealed a classic gambler's fallacy effect in the roulette wheel task. A heightened motivation to continue playing after a win, but not a near or full miss, was seen in the slot machine task. How pleased an individual was with the results of the previous round directly affected his or her interest in continuing to play in both experiments. These findings indicate that the gambler's fallacy is present in online decision-making simulations involving risk, but that the near-miss effect is not.
ContributorsCatinchi, Alexis Leigh (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Gatewood, Kira (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor

Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor temporal resolution compared with the speed at which people make choices, so understanding choice dynamics using fMRI is difficult. We address the issue utilizing electroencephalography (EEG) to study cortical processes related to temporal discounting. The fMRI literature has found that a network of fronto-parietal brain regions plays an important role during the decision-making process. We aim to explore activity in these regions during the decision process and determine how cortical activity relates to choice parameters. Based on prior fMRI studies, we hypothesized that dorsomedial prefrontal cortex (dmPFC) may act as a regulator of dorsal lateral prefrontal cortex (dlPFC) and there will be an increase in dlPFC activity for more difficult decisions. We also hypothesized that neural activity may be directly related to the temporal discount rate we estimate behaviorally. We utilized regression analysis to determine the relationship. The results found supported our hypotheses. This study may open the door to a better understanding of the dynamic of brain regions while performing a temporal discounting task.
Created2017-05
156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018