Matching Items (6)
Filtering by

Clear all filters

152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor

Temporal discounting refers to our tendency to discount the value of future rewards. At the extreme, temporal discounting can give rise to detrimental myopic decision-making. Most studies examining the neural basis of temporal discounting in people have been performed using functional Magnetic Resonance Imaging (fMRI). However, fMRI has relatively poor temporal resolution compared with the speed at which people make choices, so understanding choice dynamics using fMRI is difficult. We address the issue utilizing electroencephalography (EEG) to study cortical processes related to temporal discounting. The fMRI literature has found that a network of fronto-parietal brain regions plays an important role during the decision-making process. We aim to explore activity in these regions during the decision process and determine how cortical activity relates to choice parameters. Based on prior fMRI studies, we hypothesized that dorsomedial prefrontal cortex (dmPFC) may act as a regulator of dorsal lateral prefrontal cortex (dlPFC) and there will be an increase in dlPFC activity for more difficult decisions. We also hypothesized that neural activity may be directly related to the temporal discount rate we estimate behaviorally. We utilized regression analysis to determine the relationship. The results found supported our hypotheses. This study may open the door to a better understanding of the dynamic of brain regions while performing a temporal discounting task.
Created2017-05
134869-Thumbnail Image.png
Description
By providing vignettes with manipulated scientific evidence, this research examined if including more or less scientific detail affected decision-making in regards to the death penalty. Participants were randomly assigned one of the two manipulations (less science and more science) after reading a short scenario introducing the mock capital trial and

By providing vignettes with manipulated scientific evidence, this research examined if including more or less scientific detail affected decision-making in regards to the death penalty. Participants were randomly assigned one of the two manipulations (less science and more science) after reading a short scenario introducing the mock capital trial and their role as jury members. Survey respondents were told that a jury had previously found the defendant guilty and they would now deliberate the appropriate punishment. Before being exposed to the manipulation, respondents answered questions pertaining to their prior belief in the death penalty, as well as their level of support of procedural justice and science. These questions provided a baseline to compare to their sentencing decision. Participants were then asked what sentence they would impose \u2014 life in prison or death \u2014 and how the fMRI evidence presented by an expert witness for the defense affected their decision. Both quantitative and qualitative measures were used to identify how the level of scientific detail affected their decision. Our intended predictor variable (level of scientific detail) did not affect juror decision-making. In fact, the qualitative results revealed a variety of interpretations of the scientific evidence used both in favor of death and in favor of life. When looking at what did predict juror decision-making, gender, prior belief in the death penalty, and political ideology all were significant predictors. As in previous literature, the fMRI evidence in our study had mixed results with regards to implementation of the death penalty. This held true in both of our manipulations, showing that despite the level of detail in evidence intended for mitigation, jurors with preconceived notions may still disregard the evidence, and some jurors may even view it is aggravating and thus increase the likelihood of a death sentence for a defendant with such brain abnormalities.
ContributorsBerry, Megan Cheyenne (Author) / Fradella, Hank (Thesis director) / Pardini, Dustin (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

After answering a test question, feedback of the correct answer provided after a brief delay can be more beneficial to learning than feedback provided immediately (Brackbill & Kappy, 1962; Kulhavy & Anderson, 1972). Several theoretical models have been proposed to explain this delay-of-feedback benefit, with the most well supported being

After answering a test question, feedback of the correct answer provided after a brief delay can be more beneficial to learning than feedback provided immediately (Brackbill & Kappy, 1962; Kulhavy & Anderson, 1972). Several theoretical models have been proposed to explain this delay-of-feedback benefit, with the most well supported being that delaying feedback promotes anticipation of the correct answer, which has been examined using curiosity as a measure of answer anticipation (Mullaney et al. 2014). The present study tested this model across two task designs, one designed to elicit epistemic curiosity, and one designed to elicit perceptual curiosity, to determine if the relationship between curiosity and feedback delay is type-dependent. In Task 1, participants answered trivia questions, reported their subjective level of curiosity to know the answer, and then received correct answer feedback after a variable delay (0s, 4s, or 8s). Task 2 was identical to Task 1, except that participants learned and were tested on the identities of blurred pictures, rather than trivia question answers. A subsequent learning retention test demonstrated a significant effect of curiosity, but not feedback delay, on performance in the trivia task, and no significant effect of curiosity, but a negative effect of feedback delay, on performance in the blurred pictures task. Neither task found a significant interaction effect between curiosity and delay group, which fails to support the answer anticipation model of the delay-of-feedback benefit.

ContributorsMcDaniel, Layla (Author) / Brewer, Gene (Thesis director) / Pages, Erika (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description
The purpose of this project was to extend Whitehead 2016 to determine what neural substrates supported conflict-mediated learning. Unfortunately, as a result of the COVID-19 pandemic we were unable to address this. To repurpose the collected data, an analysis of which features of the Flanker task subjects were

The purpose of this project was to extend Whitehead 2016 to determine what neural substrates supported conflict-mediated learning. Unfortunately, as a result of the COVID-19 pandemic we were unable to address this. To repurpose the collected data, an analysis of which features of the Flanker task subjects were learning was conducted. Specifically, we wanted to know if subjects were learning by using the flanking stimuli to predict the central target or vice versa. Over 14 blocks comprised of 120 trials, we found that subjects made more stroop errors than flanker and target errors, indicating subjects were responding to stimuli in context of the flanker rather than the stroop effect.
ContributorsSobelman, Reanna Hayley (Author) / Blais, Chris (Thesis director) / Brewer, Gene (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12