Matching Items (4)
Filtering by

Clear all filters

156614-Thumbnail Image.png
Description
Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array

Academia is not what it used to be. In today’s fast-paced world, requirements

are constantly changing, and adapting to these changes in an academic curriculum

can be challenging. Given a specific aspect of a domain, there can be various levels of

proficiency that can be achieved by the students. Considering the wide array of needs,

diverse groups need customized course curriculum. The need for having an archetype

to design a course focusing on the outcomes paved the way for Outcome-based

Education (OBE). OBE focuses on the outcomes as opposed to the traditional way of

following a process [23]. According to D. Clark, the major reason for the creation of

Bloom’s taxonomy was not only to stimulate and inspire a higher quality of thinking

in academia – incorporating not just the basic fact-learning and application, but also

to evaluate and analyze on the facts and its applications [7]. Instructional Module

Development System (IMODS) is the culmination of both these models – Bloom’s

Taxonomy and OBE. It is an open-source web-based software that has been

developed on the principles of OBE and Bloom’s Taxonomy. It guides an instructor,

step-by-step, through an outcomes-based process as they define the learning

objectives, the content to be covered and develop an instruction and assessment plan.

The tool also provides the user with a repository of techniques based on the choices

made by them regarding the level of learning while defining the objectives. This helps

in maintaining alignment among all the components of the course design. The tool

also generates documentation to support the course design and provide feedback

when the course is lacking in certain aspects.

It is not just enough to come up with a model that theoretically facilitates

effective result-oriented course design. There should be facts, experiments and proof

that any model succeeds in achieving what it aims to achieve. And thus, there are two

research objectives of this thesis: (i) design a feature for course design feedback and

evaluate its effectiveness; (ii) evaluate the usefulness of a tool like IMODS on various

aspects – (a) the effectiveness of the tool in educating instructors on OBE; (b) the

effectiveness of the tool in providing appropriate and efficient pedagogy and

assessment techniques; (c) the effectiveness of the tool in building the learning

objectives; (d) effectiveness of the tool in document generation; (e) Usability of the

tool; (f) the effectiveness of OBE on course design and expected student outcomes.

The thesis presents a detailed algorithm for course design feedback, its pseudocode, a

description and proof of the correctness of the feature, methods used for evaluation

of the tool, experiments for evaluation and analysis of the obtained results.
ContributorsRaj, Vaishnavi (Author) / Bansal, Srividya (Thesis advisor) / Bansal, Ajay (Committee member) / Mehlhase, Alexandra (Committee member) / Arizona State University (Publisher)
Created2018
136787-Thumbnail Image.png
Description
There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies,

There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies, seven of which reside in school districts. These agencies are currently not conducting local longitudinal evaluations of their preschool graduates. The purpose of this study was to recommend initial steps the City of Phoenix grantee and the delegate agencies can take to begin a longitudinal evaluation process of their Head Start programs. Seven City of Phoenix Head Start agency directors were interviewed. These interviews provided information about the attitudes of the directors when considering longitudinal evaluations and how Head Start already evaluates their programs through internal assessments. The researcher also took notes on the Third Grade Follow-Up to the Head Start Executive Summary in order to make recommendations to the City of Phoenix Head Start programs about the best practices for longitudinal student evaluations.
Created2014-05
154146-Thumbnail Image.png
Description
Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.
ContributorsZhang, Lishang (Author) / VanLehn, Kurt (Thesis advisor) / Baral, Chitta (Committee member) / Hsiao, Ihan (Committee member) / Wright, Christian (Committee member) / Arizona State University (Publisher)
Created2015
189209-Thumbnail Image.png
Description
In natural language processing, language models have achieved remarkable success over the last few years. The Transformers are at the core of most of these models. Their success can be mainly attributed to an enormous amount of curated data they are trained on. Even though such language models are trained

In natural language processing, language models have achieved remarkable success over the last few years. The Transformers are at the core of most of these models. Their success can be mainly attributed to an enormous amount of curated data they are trained on. Even though such language models are trained on massive curated data, they often need specific extracted knowledge to understand better and reason. This is because often relevant knowledge may be implicit or missing, which hampers machine reasoning. Apart from that, manual knowledge curation is time-consuming and erroneous. Hence, finding fast and effective methods to extract such knowledge from data is important for improving language models. This leads to finding ideal ways to utilize such knowledge by incorporating them into language models. Successful knowledge extraction and integration lead to an important question of knowledge evaluation of such models by developing tools or introducing challenging test suites to learn about their limitations and improve them further. So to improve the transformer-based models, understanding the role of knowledge becomes important. In the pursuit to improve language models with knowledge, in this dissertation I study three broad research directions spanning across the natural language, biomedical and cybersecurity domains: (1) Knowledge Extraction (KX) - How can transformer-based language models be leveraged to extract knowledge from data? (2) Knowledge Integration (KI) - How can such specific knowledge be used to improve such models? (3) Knowledge Evaluation (KE) - How can language models be evaluated for specific skills and understand their limitations? I propose methods to extract explicit textual, implicit structural, missing textual, and missing structural knowledge from natural language and binary programs using transformer-based language models. I develop ways to improve the language model’s multi-step and commonsense reasoning abilities using external knowledge. Finally, I develop challenging datasets which assess their numerical reasoning skills in both in-domain and out-of-domain settings.
ContributorsPal, Kuntal Kumar (Author) / Baral, Chitta (Thesis advisor) / Wang, Ruoyu (Committee member) / Blanco, Eduardo (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2023