Matching Items (3)

Filtering by

Clear all filters

136787-Thumbnail Image.png

Evaluations in the City of Phoenix Head Start Agencies

Description

There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City

There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies, seven of which reside in school districts. These agencies are currently not conducting local longitudinal evaluations of their preschool graduates. The purpose of this study was to recommend initial steps the City of Phoenix grantee and the delegate agencies can take to begin a longitudinal evaluation process of their Head Start programs. Seven City of Phoenix Head Start agency directors were interviewed. These interviews provided information about the attitudes of the directors when considering longitudinal evaluations and how Head Start already evaluates their programs through internal assessments. The researcher also took notes on the Third Grade Follow-Up to the Head Start Executive Summary in order to make recommendations to the City of Phoenix Head Start programs about the best practices for longitudinal student evaluations.

Contributors

Created

Date Created
2014-05

Examining the validity of a state policy-directed framework for evaluating teacher instructional quality: informing policy, impacting practice

Description

ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates

ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates of instructional impact and observations of professional practice (PP). The research also explores educator influence (voice) in evaluation design and the role information brokers have in local decision making. Findings are situated in an evidentiary and policy context at both the LEA and state policy levels.

The study employs a single-phase, concurrent, mixed-methods research design triangulating multiple sources of qualitative and quantitative evidence onto a single (unified) validation construct: Teacher Instructional Quality. It focuses on assessing the characteristics of metrics used to construct quantitative ratings of instructional competence and the alignment of stakeholder perspectives to facets implicit in the evaluation framework. Validity examinations include assembly of criterion, content, reliability, consequential and construct articulation evidences. Perceptual perspectives were obtained from teachers, principals, district leadership, and state policy decision makers. Data for this study came from a large suburban public school district in metropolitan Phoenix, Arizona.

Study findings suggest that the evaluation framework is insufficient for supporting high stakes, consequential inferences of teacher instructional quality. This is based, in part on the following: (1) Weak associations between VAM and PP metrics; (2) Unstable VAM measures across time and between tested content areas; (3) Less than adequate scale reliabilities; (4) Lack of coherence between theorized and empirical PP factor structures; (5) Omission/underrepresentation of important instructional attributes/effects; (6) Stakeholder concerns over rater consistency, bias, and the inability of test scores to adequately represent instructional competence; (7) Negative sentiments regarding the system's ability to improve instructional competence and/or student learning; (8) Concerns regarding unintended consequences including increased stress, lower morale, harm to professional identity, and restricted learning opportunities; and (9) The general lack of empowerment and educator exclusion from the decision making process. Study findings also highlight the value of information brokers in policy decision making and the importance of having access to unbiased empirical information during the design and implementation phases of important change initiatives.

Contributors

Agent

Created

Date Created
2015

154146-Thumbnail Image.png

Biology question generation from a semantic network

Description

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.

Contributors

Agent

Created

Date Created
2015