Matching Items (5)
Filtering by

Clear all filters

152171-Thumbnail Image.png
Description

Choropleth maps are a common form of online cartographic visualization. They reveal patterns in spatial distributions of a variable by associating colors with data values measured at areal units. Although this capability of pattern revelation has popularized the use of choropleth maps, existing methods for their online delivery are limited

Choropleth maps are a common form of online cartographic visualization. They reveal patterns in spatial distributions of a variable by associating colors with data values measured at areal units. Although this capability of pattern revelation has popularized the use of choropleth maps, existing methods for their online delivery are limited in supporting dynamic map generation from large areal data. This limitation has become increasingly problematic in online choropleth mapping as access to small area statistics, such as high-resolution census data and real-time aggregates of geospatial data streams, has never been easier due to advances in geospatial web technologies. The current literature shows that the challenge of large areal data can be mitigated through tiled maps where pre-processed map data are hierarchically partitioned into tiny rectangular images or map chunks for efficient data transmission. Various approaches have emerged lately to enable this tile-based choropleth mapping, yet little empirical evidence exists on their ability to handle spatial data with large numbers of areal units, thus complicating technical decision making in the development of online choropleth mapping applications. To fill this knowledge gap, this dissertation study conducts a scalability evaluation of three tile-based methods discussed in the literature: raster, scalable vector graphics (SVG), and HTML5 Canvas. For the evaluation, the study develops two test applications, generates map tiles from five different boundaries of the United States, and measures the response times of the applications under multiple test operations. While specific to the experimental setups of the study, the evaluation results show that the raster method scales better across various types of user interaction than the other methods. Empirical evidence also points to the superior scalability of Canvas to SVG in dynamic rendering of vector tiles, but not necessarily for partial updates of the tiles. These findings indicate that the raster method is better suited for dynamic choropleth rendering from large areal data, while Canvas would be more suitable than SVG when such rendering frequently involves complete updates of vector shapes.

ContributorsHwang, Myunghwa (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio J. (Committee member) / Wentz, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2013
Description
ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates of instructional impact and observations of professional practice (PP).

ABSTRACT

This study examines validity evidence of a state policy-directed teacher evaluation system implemented in Arizona during school year 2012-2013. The purpose was to evaluate the warrant for making high stakes, consequential judgments of teacher competence based on value-added (VAM) estimates of instructional impact and observations of professional practice (PP). The research also explores educator influence (voice) in evaluation design and the role information brokers have in local decision making. Findings are situated in an evidentiary and policy context at both the LEA and state policy levels.

The study employs a single-phase, concurrent, mixed-methods research design triangulating multiple sources of qualitative and quantitative evidence onto a single (unified) validation construct: Teacher Instructional Quality. It focuses on assessing the characteristics of metrics used to construct quantitative ratings of instructional competence and the alignment of stakeholder perspectives to facets implicit in the evaluation framework. Validity examinations include assembly of criterion, content, reliability, consequential and construct articulation evidences. Perceptual perspectives were obtained from teachers, principals, district leadership, and state policy decision makers. Data for this study came from a large suburban public school district in metropolitan Phoenix, Arizona.

Study findings suggest that the evaluation framework is insufficient for supporting high stakes, consequential inferences of teacher instructional quality. This is based, in part on the following: (1) Weak associations between VAM and PP metrics; (2) Unstable VAM measures across time and between tested content areas; (3) Less than adequate scale reliabilities; (4) Lack of coherence between theorized and empirical PP factor structures; (5) Omission/underrepresentation of important instructional attributes/effects; (6) Stakeholder concerns over rater consistency, bias, and the inability of test scores to adequately represent instructional competence; (7) Negative sentiments regarding the system's ability to improve instructional competence and/or student learning; (8) Concerns regarding unintended consequences including increased stress, lower morale, harm to professional identity, and restricted learning opportunities; and (9) The general lack of empowerment and educator exclusion from the decision making process. Study findings also highlight the value of information brokers in policy decision making and the importance of having access to unbiased empirical information during the design and implementation phases of important change initiatives.
ContributorsSloat, Edward F. (Author) / Wetzel, Keith (Thesis advisor) / Amrein-Beardsley, Audrey (Thesis advisor) / Ewbank, Ann (Committee member) / Shough, Lori (Committee member) / Arizona State University (Publisher)
Created2015
154079-Thumbnail Image.png
Description
Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance

Nearly 25 years ago, parallel computing techniques were first applied to vector spatial analysis methods. This initial research was driven by the desire to reduce computing times in order to support scaling to larger problem sets. Since this initial work, rapid technological advancement has driven the availability of High Performance Computing (HPC) resources, in the form of multi-core desktop computers, distributed geographic information processing systems, e.g. computational grids, and single site HPC clusters. In step with increases in computational resources, significant advancement in the capabilities to capture and store large quantities of spatially enabled data have been realized. A key component to utilizing vast data quantities in HPC environments, scalable algorithms, have failed to keep pace. The National Science Foundation has identified the lack of scalable algorithms in codified frameworks as an essential research product. Fulfillment of this goal is challenging given the lack of a codified theoretical framework mapping atomic numeric operations from the spatial analysis stack to parallel programming paradigms, the diversity in vernacular utilized by research groups, the propensity for implementations to tightly couple to under- lying hardware, and the general difficulty in realizing scalable parallel algorithms. This dissertation develops a taxonomy of parallel vector spatial analysis algorithms with classification being defined by root mathematical operation and communication pattern, a computational dwarf. Six computational dwarfs are identified, three being drawn directly from an existing parallel computing taxonomy and three being created to capture characteristics unique to spatial analysis algorithms. The taxonomy provides a high-level classification decoupled from low-level implementation details such as hardware, communication protocols, implementation language, decomposition method, or file input and output. By taking a high-level approach implementation specifics are broadly proposed, breadth of coverage is achieved, and extensibility is ensured. The taxonomy is both informed and informed by five case studies im- plemented across multiple, divergent hardware environments. A major contribution of this dissertation is a theoretical framework to support the future development of concrete parallel vector spatial analysis frameworks through the identification of computational dwarfs and, by extension, successful implementation strategies.
ContributorsLaura, Jason (Author) / Rey, Sergio J. (Thesis advisor) / Anselin, Luc (Committee member) / Wang, Shaowen (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
136787-Thumbnail Image.png
Description
There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies,

There is a serious need for early childhood intervention practices for children who are living at or below the poverty line. Since 1965 Head Start has provided a federally funded, free preschool program for children in this population. The City of Phoenix Head Start program consists of nine delegate agencies, seven of which reside in school districts. These agencies are currently not conducting local longitudinal evaluations of their preschool graduates. The purpose of this study was to recommend initial steps the City of Phoenix grantee and the delegate agencies can take to begin a longitudinal evaluation process of their Head Start programs. Seven City of Phoenix Head Start agency directors were interviewed. These interviews provided information about the attitudes of the directors when considering longitudinal evaluations and how Head Start already evaluates their programs through internal assessments. The researcher also took notes on the Third Grade Follow-Up to the Head Start Executive Summary in order to make recommendations to the City of Phoenix Head Start programs about the best practices for longitudinal student evaluations.
Created2014-05
155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
ContributorsKolak, Marynia Aniela (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio (Committee member) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2017