Matching Items (68)
Filtering by

Clear all filters

135114-Thumbnail Image.png
Description
Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to

Unlike the autosomes, recombination on the sex chromosomes is limited to the pseudoautosomal regions (PARs) at each end of the chromosome. PAR1 spans approximately 2.7 Mb from the tip of the proximal arm of each sex chromosome, and a pseudoautosomal boundary between the PAR1 and non-PAR region is thought to have evolved from a Y-specific inversion that suppressed recombination across the boundary. In addition to the two PARs, there is also a human-specific X-transposed region (XTR) that was duplicated from the X to the Y chromosome. Genetic diversity is expected to be higher in recombining than nonrecombining regions, particularly because recombination reduces the effects of linked selection, allowing neutral variation to accumulate. We previously showed that diversity decreases linearly across the previously defined pseudoautosomal boundary (rather than drop suddenly at the boundary), suggesting that the pseudoautosomal boundary may not be as strict as previously thought. In this study, we analyzed data from 1271 genetic females to explore the extent to which the pseudoautosomal boundary varies among human populations (broadly, African, European, South Asian, East Asian, and the Americas). We found that, in all populations, genetic diversity was significantly higher in the PAR1 and XTR than in the non-PAR regions, and that diversity decreased linearly from the PAR1 to finally reach a non-PAR value well past the pseudoautosomal boundary in all populations. However, we also found that the location at which diversity changes from reflecting the higher PAR1 diversity to the lower nonPAR diversity varied by as much as 500 kb among populations. The lack of genetic evidence for a strict pseudoautosomal boundary and the variability in patterns of diversity across the pseudoautosomal boundary are consistent with two potential explanations: (1) the boundary itself may vary across populations, or (2) that population-specific demographic histories have shaped diversity across the pseudoautosomal boundary.
ContributorsCotter, Daniel Juetten (Author) / Wilson Sayres, Melissa (Thesis director) / Stone, Anne (Committee member) / Webster, Timothy (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148381-Thumbnail Image.png
Description

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to

Healthcare facilities are essential for any community, and they must stay up-to-date with the latest equipment and technology. They provide necessary resources for keeping populations healthy and safe. In order to provide healthcare services, these healthcare facilities must be adequately equipped with appropriate physical capital as well as software to meet the demands of their patients. Healthcare capital equipment planning involves building up a facility with all it’s equipment and is a part of the healthcare supply chain. Attainia is a healthcare capital equipment planning software used to assist equipment planners in organizing the procurement of equipment for their projects. Attainia has a large amount of data about the capital equipment supply chain through the Attainia equipment catalog. Analysis of this catalog data reveals different patterns in the spending patterns of capital equipment planners as well as trends in the supplier offerings. Since Attainia itself is a software, Attainia’s users have experience with implementing and integrating software into healthcare IT solutions. Their experiences give some insight into the complex nature of software implementations at healthcare facilities. The COVID-19 pandemic has affected healthcare facilities all over the world. Impacting the supply chain and hitting hospitals’ finances, COVID-19 has drastically changed many parts of the healthcare system. This paper will examine some of these ongoing effects from COVID-19 along with analysis on capital equipment planning, supply chain, and healthcare software implementation.

ContributorsShah, Shailee (Author) / Pye, Jessica (Thesis director) / Roumina, Kavous (Committee member) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148391-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsNaqvi, Avina Itrat (Co-author) / Shaikh, Sara (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148393-Thumbnail Image.png
Description

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing

Vaccines are modern medicine’s best way of combating the majority of viral and bacterial illnesses and contagions to date. Thanks to the introduction of vaccines since the first uses of them in 1796 (Jenner’s smallpox vaccine), they have drastically reduced figures of disease worldwide, turning once lethal and life changing conditions into minor annoyances; Some of these afflictions have even become nonexistent or even extinct in certain parts of the world outside of a controlled laboratory setting. With many advancements and overwhelming evidence proving their efficiency, it is clear that vaccines have become nothing less than a necessity for everyday healthcare in today’s world. <br/>The greatest contributor to the creation and evolution of vaccines throughout the years is by far the progress and work done in the field of molecular and cellular biology. These advancements have become the bedrock of modern vaccination, as shown by the differing types of vaccines and their methodology. The most common varieties of vaccines are include ‘dead’ or inactivated vaccines, one such example being the pertussis strain of vaccines, which have either dead or torn apart cells for the body to easily fight off, allowing the immune system to easily and quickly counter the illness; Additionally, there are also live attenuated vaccines (LAVs) in which a weaker version of the pathogen is introduced to the body to stimulate an immune response, or a recombinant mRNA vaccine where mRNA containing the coding for an antigen is presented for immunological response, the latter being what the current COVID-19 vaccines are based on. This is in part aided by the presence of immunological adjuvants, antigens and substances that the immune system can recognize, target, and remember for future infections. However, for more serious illnesses the body needs a bigger threat to analyze, which leads to live vaccines- instead of dead or individual components of a potential pathogen, a weakened version is created in the lab to allow the body to combat it. The idea behind this is the same, but to a larger degree so a more serious illness such as measles, mumps, and rubella (MMR) do not infect us.<br/>However, for the past couple of decades the public’s views on vaccination has greatly varied, with the rise of fear and disinformation leading those to believe that modern medicine is a threat in disguise. The largest of these arguments began in the late 90’s, when Dr. Andrew Wakefield published an article under the Lancet with false information connecting vaccinations to the occurrence of autism in younger children- a theory which has since then been proven incorrect numerous times over. Unfortunately, the rise of hysteria and paranoia in people, along with more misinformation from misleading sources, have strengthened the anti-vaccination cause and has made it into a serious threat to the health of those world-wide.<br/>The aim of this thesis is to provide an accurate and thorough analysis on these three themes- the history of vaccines, their inner workings and machinations in providing immune defenses for the body, and the current controversy of the anti-vaccination movement. Additionally, there will be two other sections going in-depth on two specific areas where vaccination is highly important; The spread and fear of the Human Immunodeficiency Virus (HIV) has been around for nearly four decades, so it begs the question: what makes this such a difficult virus, and how can a vaccine be created to combat it? Additionally, in the last year the world has encountered a new virus that has evolved into a global pandemic, SARS-COV 2. This new strain of coronavirus has shown itself to be highly contagious and rapidly mutating, and the race to quickly develop a vaccine to counteract it has been on-going since its first major infections in Wuhan, China. Overall, this thesis will go in-depth in providing the most accurate, up-to-date, and critical information regarding vaccinations today.

ContributorsKolb Celaya, Connor Emilio (Author) / Topal, Emel (Thesis director) / Huffman, Holly (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148452-Thumbnail Image.png
Description

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a

Due to the COVID-19 pandemic, declared in March of 2020, there have been many lifestyle changes which have likely influenced tobacco smoking behavior. Such lifestyle changes include lockdowns, stay at home orders, reduction in social cues related to smoking, increased stress, and boredom among other things. This study utilized a cross-sectional survey which looked into these behaviors, primarily perceived risk to COVID-19, and determined if there is an association between perceived risk and education level/race. Education level is a proxy for income and material resources, therefore making it more likely that people with lower levels of education have fewer resources and higher perceived risk to negative effects of COVID-19. Additionally, people of color are often marginalized in the medical community along with being the target of heavy advertising by tobacco companies which have likely impacted risk to COVID-19 as well.

ContributorsLodha, Pratishtha (Author) / Leischow, J. Scott (Thesis director) / Pearson, Jennifer (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148124-Thumbnail Image.png
Description

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known

Before the COVID-19 pandemic, there was a great need for United States’ restaurants to “go green” due to consumers’ habits of frequently eating out. Unfortunately, COVID-19 has caused this initiative to lose traction. While the amount of customers ordering takeout has increased, there is less emphasis on sustainability.<br/>Plastic is known for its harmful effects on the environment and the extreme length of time it takes to decompose. According to the International Union for Conservation of Nature (IUCN), almost 8 million tons of plastic end up in the oceans at an annual rate, threatening not only the safety of marine species but also human health. Modern food packaging materials have included a blend of synthetic ingredients, trickling into our daily lives and polluting the air, water, and land. Single-use plastic items slowly degrade into microplastics and can take up to hundreds of years to biodegrade.<br/>Due to COVID-19, restaurants have switched to takeout and delivery options to adapt to the new business environment and guidelines enforced by the Center of Disease Control (CDC) mandated guidelines. Some of these guidelines include: notices encouraging social distancing and mask-wearing, mandated masks for employees, and easy access to sanitary supplies. This cultural shift is motivating restaurants to search for a quick, cheap, and easy fix to adapt to the increased demand of take-out and delivery methods. This increases their plastic consumption of items such as plastic bags/paper bags, styrofoam containers, and beverage cups. Plastic is the most popular takeout material because of its price and durability as well as allowing for limited contamination and easy disposability.<br/>Almost all food products come in packaging and this, more often than not, is single-use. Food is the largest market out of all the packaging industry, maintaining roughly two-thirds of material going to food. The US Environmental Protection Agency reports that almost half of all municipal solid waste is made up of food and food packaging materials. In 2014, over 162 million tons of packaging material waste was generated in the states. This typically contains toxic inks and dyes that leach into groundwater and soil. When degrading, pieces of plastic absorb toxins like PCBs and pesticides, and then each piece will, in turn, release toxic chemicals like Bisphenol-A. Even before being thrown away, it causes negative effects for the environment. The creation of packaging materials uses many resources such as petroleum and chemicals and then releases toxic byproducts. Such byproducts include sludge containing contaminants, greenhouse gases, and heavy metal and particulate matter emissions. Unlike many other industries, plastic manufacturing has actually increased production. Demand has increased and especially in the food industry to keep things sanitary. This increase in production is reflective of the increase in waste. <br/>Although restaurants have implemented their own sustainable initiatives to combat their carbon footprint, the pandemic has unfortunately forced restaurants to digress. For example, Just Salad, a fast-food restaurant chain, incentivized customers with discounted meals to use reusable bowls which saved over 75,000 pounds of plastic per year. However, when the pandemic hit, the company halted the program to pivot towards takeout and delivery. This effect is apparent on an international scale. Singapore was in lock-down for eight weeks and during that time, 1,470 tons of takeout and food delivery plastic waste was thrown out. In addition, the Hong Kong environmental group Greeners Action surveyed 2,000 people in April and the results showed that people are ordering out twice as much as last year, doubling the use of plastic.<br/>However, is this surge of plastic usage necessary in the food industry or are there methods that can be used to reduce the amount of waste production? The COVID-19 pandemic caused a fracture in the food system’s supply chain, involving food, factory, and farm. This thesis will strive to tackle such topics by analyzing the supply chains of the food industry and identify areas for sustainable opportunities. These recommendations will help to identify areas for green improvement.

ContributorsDeng, Aretha (Co-author) / Tao, Adlar (Co-author) / Vargas, Cassandra (Co-author) / Printezis, Antonios (Thesis director) / Konopka, John (Committee member) / Department of Supply Chain Management (Contributor) / School of International Letters and Cultures (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148134-Thumbnail Image.png
Description

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it had to meet various legal criteria. These major legal considerations, in no particular order, are: Clinical Laboratory Improvement Amendments compliance; FDA Emergency Use Authorization (EUA); Health Insurance Portability and Accountability Act compliance; state licensure; patient, state, and federal result reporting; and liability. <br/>In this paper, the EUA pathway will be examined and contextualized in relation to the ABCTL. This will include an examination of the FDA regulations and policies that affect the laboratory during its operations, as well as a look at the different authorization pathways for diagnostic tests present during the COVID-19 pandemic.

ContributorsJenkins, Landon James (Co-author) / Espinoza, Hale Anna (Co-author) / Filipek, Marina (Co-author) / Ross, Nathaniel (Co-author) / Salvatierra, Madeline (Co-author) / Compton, Carolyn (Thesis director) / Rigoni, Adam (Committee member) / Stanford, Michael (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148148-Thumbnail Image.png
Description

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of April 2021, there have been over 130 million recorded cases of COVID-19 globally, with the United States taking the lead with approximately 31.5 million cases. Developing highly accurate and timely diagnostics has been an important need of our country that the ABCTL has had tremendous success in delivering. Near the start of the pandemic, the ABCTL utilized saliva as a testing sample rather than nasopharyngeal (NP) swabs that were limited in supply, required highly trained medical personnel, and were generally uncomfortable for participants. Results from literature across the globe showed how saliva performed just as well as the NP swabs (the golden standard) while being an easier test to collect and analyze. Going forward, the ABCTL will continue to develop high quality diagnostic tools and adapt to the ever-evolving needs our communities face regarding the COVID-19 pandemic.

ContributorsSmetanick, Jennifer (Author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148153-Thumbnail Image.png
Description

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe.

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe. By developing its own strategy for COVID-19 testing, ASU was on the forefront of research by developing new ways to test for the virus. This process began when research labs at ASU were quickly converted into clinical testing laboratories, which used saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. The lab developed more accurate and time efficient results, while also converting Nasopharyngeal tests to saliva tests. Not only did this allow for fewer amounts of resources required, but more individuals were able to get tested at faster rates. The ASU Biodesign Clinical Testing Laboratory (ABCTL) was able to accomplish this through the adaptation of previous machines and personnel to fit the testing needs of the community. In the future, the ABCTL will continue to adapt to the ever-changing needs of the community in regards to the unprecedented COVID-19 pandemic. The research collected throughout the past year following the breakout of the COVID-19 pandemic is a reflection of the impressive strategy ASU has created to keep its communities safe, while continuously working towards improving not only the testing sites and functions, but also the ways in which an institution approaches and manages an unfortunate impact on diverse communities.

ContributorsMajhail, Kajol (Co-author) / Smetanick, Jennifer (Co-author) / Anderson, Laura (Co-author) / Ruan, Ellen (Co-author) / Shears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148154-Thumbnail Image.png
Description

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a surge in psychiatric disorders, either newly onset or exacerbating preexisting conditions (Torales, et al, 2020). Due to significant alterations in daily life, an increase in physical inactivity has already been proven to lead to deterioration of cardiovascular health (Pecanha et al, 2020). Stay at home orders have prevented otherwise healthy people from keeping up their daily exercise and eating habits, contributing to a heightened amount of mental health and hypertensive related issues.<br/>In addition to these health concerns, the pandemic has put stress upon pharmaceutical management practices. Drug utilization surges have led to an impact on patient care and management which requires careful measures to be taken to reduce the inflow of sick patients (Badreldin and Atallah, 2020). A global drug shortage has been a result of these drug utilizations. Understanding the alterations in the usage of specific medications such as prescription psychotropics, antihypertensive drugs, and antidiabetic agents can aid in population management and drug shortages.

ContributorsCastro, Ana Maria (Author) / Martin, Thomas (Thesis director) / Nunez, Diane (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05