Matching Items (3)
Filtering by

Clear all filters

148171-Thumbnail Image.png
Description

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy in comparison to the best-known method for surveillance, randomly selected COVID-19 testing, has limited research. This study evaluated the trends and correlations present between SARS-CoV-2 in the effluent wastewater of a large university campus and random COVID-19 testing results published by the university. A moderately strong positive correlation was found between the random testing and WBE surveillance methods (r = 0.63), and this correlation was strengthened when accommodating for lost samples during the experiment (r = 0.74).

ContributorsWright, Jillian (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166422-Thumbnail Image.png
Description

On March 11th, COVID-19 was declared a pandemic by the World Health Organization. The ensuing months saw an extensive allocation of resources toward combating the virus and the development of a vaccine. Despite extensive research on SARS-CoV-2, there remains little information regarding the implications of SARS-CoV-2 gastrointestinal shedding on COVID-19

On March 11th, COVID-19 was declared a pandemic by the World Health Organization. The ensuing months saw an extensive allocation of resources toward combating the virus and the development of a vaccine. Despite extensive research on SARS-CoV-2, there remains little information regarding the implications of SARS-CoV-2 gastrointestinal shedding on COVID-19 disease. It is hypothesized that SARS-CoV-2 RNA is shed in the stool for up to several weeks and that viral protein persists in the GI tract. This study also explored calprotectin and zonulin levels, markers of inflammation, and intestinal permeability, respectively, to assess if increased viral shedding is associated with elevated levels of either. This study utilized RT-qPCR assays to confirm the presence of viral RNA. Subsequently, RT-qPCR positive samples were heat-inactivated and SARS-CoV-2 spike detection enzyme-linked immunosorbent assay (ELISA) was used to ascertain viral protein shedding. Additional ELISA was performed to assess zonulin and calprotectin levels. Results indicated that 30 of the 758 unique samples were confirmed SARS-CoV-2 positive by RT-qPCR. Spike protein was ultimately not detected by ELISA. Additionally, no significant increase in zonulin was observed in patient samples when comparing RT-qPCR positive and negative Samples. A notable upwards trend approaching significance in calprotectin levels existed for patients who tested positive for SARS-CoV-2 by RT-qPCR, though, it was found that no correlation existed between SARS-CoV-2 copy number and calprotectin levels. Understanding the interaction between SARS-CoV-2 and the GI tract may therefore have significant clinical implications and this study demonstrates the need for additional studies to garner a more comprehensive understanding.

ContributorsKhan, Adam (Author) / Lim, Efrem (Thesis director) / Li, Yize (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
165151-Thumbnail Image.png
Description

Virus-like particles (VLPs) are optimum candidates for creating vaccines, as they are highly flexible, adaptable, safe, and similar to the structural proteins of the target cells. The COVID 19 pandemic has increased the need to create effective and safe vaccines that can be mass produced to stop the spread of

Virus-like particles (VLPs) are optimum candidates for creating vaccines, as they are highly flexible, adaptable, safe, and similar to the structural proteins of the target cells. The COVID 19 pandemic has increased the need to create effective and safe vaccines that can be mass produced to stop the spread of COVID-19. Till now, various types of vaccine platforms have been utilized to create COVID-19 vaccines, each with unique characteristics and techniques. It is essential to use robust vaccine platforms that can deliver optimum results in a short period of time, with minimal risks. The structural proteins found in SARS-CoV-2, such as Spike (S) protein have been widely targeted to induce antibody response, also called a humoral response, which is a part of acquired immunity. The other structural proteins such as M (membrane) and E (envelope) can also be used as targets for antibodies. The S2 and glycoprotein (S full) can be used to induce an efficient IgG response. Therefore, the incorporation of structural proteins into VLPs can prove to be useful. Furthermore, double mosaic VLPs employs double epitopes, which can effectively cover the distances between the S proteins, thus optimizing the B cell activation process. This review describes the various developments that have taken place in the field of VLPs and more specifically, with regards to developing VLP vaccines against the SARS-CoV-2 virus.

ContributorsSharma, Anjali (Author) / Hogue, Brenda (Thesis director) / Li, Yize (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05