Matching Items (4)
Filtering by

Clear all filters

134268-Thumbnail Image.png
Description
This project will explain the positive impact and effectiveness of Sarbanes-Oxley on corporate responsibility, and through that lens, examine how to make certain subchapters of Title 42, "the Sunshine Act", concerning healthcare fund tracking more transparent and without conflicts of interest. There will be an analysis of the implementation of

This project will explain the positive impact and effectiveness of Sarbanes-Oxley on corporate responsibility, and through that lens, examine how to make certain subchapters of Title 42, "the Sunshine Act", concerning healthcare fund tracking more transparent and without conflicts of interest. There will be an analysis of the implementation of the Sarbanes-Oxley Act in corporate America and the impact it had on corporate responsibility. There will be a comprehensive review of the history of both the Sarbanes-Oxley Act and the Sunshine Act, along with their origins, stakeholders, and impact on their respective industries. Suggestions to improve certain current United States Code subchapters and subsequent regulations will be announced considering the success that has come from Section 404 of Sarbanes-Oxley.
ContributorsRogers, Anne Marie (Author) / Brian, Jennifer (Thesis director) / Agne, Sara (Committee member) / School of Accountancy (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134933-Thumbnail Image.png
Description
Given its impact on the accounting profession and public corporations, Sarbanes-Oxley Act of 2002(SOX) is a widely researched regulation among accounting scholars. Research typically focuses on the impact it has had on corporations, executives and auditors, however, there is limited research that illustrates the impact SOX may have on average

Given its impact on the accounting profession and public corporations, Sarbanes-Oxley Act of 2002(SOX) is a widely researched regulation among accounting scholars. Research typically focuses on the impact it has had on corporations, executives and auditors, however, there is limited research that illustrates the impact SOX may have on average Americans. There were several US criminal code sections that resulted from the passing of SOX. Statute 1519, which is often referred to as the "anti-shredding provision", penalizes anyone who "knowingly alters, destroys, mutilates, conceals, covers up, falsifies, or makes a false entry in any record, document, or tangible object with the intent to" obstruct a current or foreseeable federal investigation. This statute, although intended to punish behavior similar to that which occurred in the early 2000s by corporations and auditors, has been used to charge people beyond its original intent. Several issues with the crafting of the statute cause its broad application and some litigation even reached the Supreme Court due to its vague wording. Not only is the statute being applied beyond the intent, there are other issues that legal scholars have critiqued it for. This statute is far from being the only law facing these issues as the same issues and critiques are found in the 14th amendment. Rewriting the statute seems to be the most effective way to address the concerns of judges, lawyers and defendants regarding the statute. In addition, Congress could have passed this statute outside of SOX to avoid being seen as overreaching if obstruction of justice related to documents was actually an issue outside of corporate fraud.
ContributorsGonzalez, Joana (Author) / Samuelson, Melissa (Thesis director) / Lowe, Jordan (Committee member) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131109-Thumbnail Image.png
Description
When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics

When an individual is conceived there is a metaphorical roll of the dice. A game of chance is played with their genetics to which they cannot consent. Unlucky players could have inherited mild conditions such as chronic allergies to terrible diseases such as Cystic Fibrosis or Tay-Sachs. Controlling the genetics of an individual through the use of gene editing technology could be the key to ending this cycle of genetic diseases. Once detrimental diseases are now being cured through direct applications of genetic engineering. Even as we see the uses of genetic engineering technologies change the world, the more “sci-fi” applications have yet to be fully realized or explored. Editing hereditary genes before birth may have the ability to eliminate diseases from entire genetic lines, reduce the possibility for certain cancers and diseases, and perhaps even modify phenotypes in humans to create enhanced humans. Although this scientific field shows promise, it does have its reservations. Like any other scientific field, its ability to benefit humanity depends on its use.
ContributorsSchuler, Jacob (Co-author) / Silva, Anthony (Co-author) / Brian, Jennifer (Thesis director) / Ross, Christian (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05