Matching Items (6)
Filtering by

Clear all filters

134935-Thumbnail Image.png
Description
The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied area since they have become associated with the likelihood of patient survival. Further, circulating tumor cells can be used to determine changes in the genome of the cancer leading to targeted treatment. First, the aptamers were attached onto the hydrogel through an EDC/NHS reaction. The aptamers were verified to be attached onto the hydrogel through FTIR spectroscopy. The cell capture experiments were completed by exposing the hydrogel to a solution of leukemia cells for 10 minutes at room temperature. The cell release experiments were completed by exposing the hydrogel to a 40°C solution. Several capture and release experiments were completed to measure how many cells could be captured, how quickly, and how many cells captured were released. The aptamers were chemically attached to the hydrogel. 300 cells per square millimeter could be captured at a time in a 10 minute time period and released in a 5 minute period. Of the cells captured, 96% of them were alive once caught. 99% of cells caught were released once exposed to elevated temperature. The project opens the possibility to quickly and efficiently capture and release tumor cells using only changes in temperature. Further, most of the cells that were captured were alive and nearly all of those were released leading to high survival and capture efficiency.
ContributorsPaxton, Rebecca Joanne (Author) / Stephanopoulos, Nicholas (Thesis director) / He, Ximin (Committee member) / Gould, Ian (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148326-Thumbnail Image.png
Description

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching students life skills, social skills, and emotional intelligence.<br/>In order to prove the value of our service, StreetWise conducted a survey that asked students about their habits, thoughts on stress, and their future. Students from Arizona State University were surveyed with questions on respondent background, employment, number one stressor, preferred learning method, and topics that students were interested in learning. We found that students’ number one stressor was school but was interested in learning skills that would prepare them for their future after graduation. We used the results to make final decisions so that StreetWise could offer lessons that students would get the most value out of. This led to us conducting a second survey which included mock ups of the website, examples of interactive lesson plans, and an overview of the app. Students from the first survey were surveyed in addition to new respondents. This survey was intended for us to ensure that our service would maintain its value to students with the aesthetic and interface that we envisioned.

ContributorsWard, William Henry (Co-author) / Ahir, Hiral (Co-author) / Compton, Katherine (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148328-Thumbnail Image.png
Description

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching students life skills, social skills, and emotional intelligence.<br/>In order to prove the value of our service, StreetWise conducted a survey that asked students about their habits, thoughts on stress, and their future. Students from Arizona State University were surveyed with questions on respondent background, employment, number one stressor, preferred learning method, and topics that students were interested in learning. We found that students’ number one stressor was school but was interested in learning skills that would prepare them for their future after graduation. We used the results to make final decisions so that StreetWise could offer lessons that students would get the most value out of. This led to us conducting a second survey which included mock ups of the website, examples of interactive lesson plans, and an overview of the app. Students from the first survey were surveyed in addition to new respondents. This survey was intended for us to ensure that our service would maintain its value to students with the aesthetic and interface that we envisioned.

ContributorsAhir, Hiral V (Co-author) / Compton, Katherine (Co-author) / Ward, William (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Alzheimer’s disease (AD) is a common neurodegenerative disorder affecting approximately 10% of people aged 65 and up and 30-50% over 85. In pathological AD representations, a way to recognize early onset AD is the increased levels of pro-NGF in BFCNs that come from the downregulation of NGF with age. Pro-NGF

Alzheimer’s disease (AD) is a common neurodegenerative disorder affecting approximately 10% of people aged 65 and up and 30-50% over 85. In pathological AD representations, a way to recognize early onset AD is the increased levels of pro-NGF in BFCNs that come from the downregulation of NGF with age. Pro-NGF has a higher affinity for p75NTR, which binds and participates in the pro-NGF-p75NTR-sortilin complex sequentially cleaved by α- and γ-secretase. Pro-NGF triggers apoptosis through the cleavage of the intracellular membrane by γ-secretase. Since γ-secretase physically cleaves off the intramembrane portion that promotes TNF- and Fas-dependent apoptotic signaling pathways, it has a crucial role in AD and must be better understood. This research aims to understand better and visualize γ-secretase and its actions, specifically with its interactions with the substrate p75NTR in the RIP process. To analyze γ-secretase function, the proteins must be produced and analyzed through the protein expression protocol. During protein production, DNA, cell concentrations, and optical density measurements were difficult to produce due to the incompetency of e. coli cells (DH5α), contamination of the Sf9 insect cell culture, and decreased viability of aged insect cells. We identified the problems and improved the conditions for future project development.

ContributorsRapacz, Elizabeth (Author) / Chiu, Po-Lin (Thesis director) / Van Horn, Wade (Committee member) / Munk, Barbara (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
131161-Thumbnail Image.png
Description
The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After

The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After several failed synthesizes, one PIL, cholinium dihydrogen phosphate, was chosen for further testing. This solution was put through a series of vitrification tests in order to understand its crystallization limits. Once limits were understood, cholinium dihydrogen phosphate was combined with ribosomal proteins and viewed under a transmission electron microscope to collect negative stain images. After adjusting the ratio of PIL to buffer and the concentration of ribosomes, images of whole intact ribosomes were captured. Samples were then placed in an EM grid, manually dipped in liquid nitrogen, and viewed using the the cryo-EM. These grids revealed ice too thick to properly image, an issue that was not solved by using a more aggressive blotting technique. Although the sample preparation process was not simplified, progress was made towards doing so and further testing using different techniques may result in success.
ContributorsStreet, Maya Ann (Author) / Angell, Charles Austen (Thesis director) / Chiu, Po-Lin (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation and inflammation. Furthermore, unfolded protein responses in vascular cells’ endoplasmic reticulum (ER), known as ER stress, have emerged as a potential downstream mechanism by which inflammatory EGFR activation may lead to aneurysm rupture. The purpose of this project was to investigate the role of EGFR inhibition on the aneurysm rupture rate in a preclinical model, investigate the role of ER stress induction on the aneurysm rupture rate, and confirm which cellular phenomenon lies upstream in this mechanistic cascade. Based on analyses of aneurysm rupture rate and gene expression in the Circle of Willis, ER stress and inflammatory unfolded protein responses were found to be downstream of initial EGFR activation, which may be an effective therapeutic target for preventing aneurysm rupture in a clinical setting.

ContributorsPolen, Kyle (Author) / Van Horn, Wade (Thesis director) / Martin, Thomas (Committee member) / Hashimoto, Tomoki (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-12