Matching Items (3)
Filtering by

Clear all filters

134935-Thumbnail Image.png
Description
The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied area since they have become associated with the likelihood of patient survival. Further, circulating tumor cells can be used to determine changes in the genome of the cancer leading to targeted treatment. First, the aptamers were attached onto the hydrogel through an EDC/NHS reaction. The aptamers were verified to be attached onto the hydrogel through FTIR spectroscopy. The cell capture experiments were completed by exposing the hydrogel to a solution of leukemia cells for 10 minutes at room temperature. The cell release experiments were completed by exposing the hydrogel to a 40°C solution. Several capture and release experiments were completed to measure how many cells could be captured, how quickly, and how many cells captured were released. The aptamers were chemically attached to the hydrogel. 300 cells per square millimeter could be captured at a time in a 10 minute time period and released in a 5 minute period. Of the cells captured, 96% of them were alive once caught. 99% of cells caught were released once exposed to elevated temperature. The project opens the possibility to quickly and efficiently capture and release tumor cells using only changes in temperature. Further, most of the cells that were captured were alive and nearly all of those were released leading to high survival and capture efficiency.
ContributorsPaxton, Rebecca Joanne (Author) / Stephanopoulos, Nicholas (Thesis director) / He, Ximin (Committee member) / Gould, Ian (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131161-Thumbnail Image.png
Description
The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After

The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After several failed synthesizes, one PIL, cholinium dihydrogen phosphate, was chosen for further testing. This solution was put through a series of vitrification tests in order to understand its crystallization limits. Once limits were understood, cholinium dihydrogen phosphate was combined with ribosomal proteins and viewed under a transmission electron microscope to collect negative stain images. After adjusting the ratio of PIL to buffer and the concentration of ribosomes, images of whole intact ribosomes were captured. Samples were then placed in an EM grid, manually dipped in liquid nitrogen, and viewed using the the cryo-EM. These grids revealed ice too thick to properly image, an issue that was not solved by using a more aggressive blotting technique. Although the sample preparation process was not simplified, progress was made towards doing so and further testing using different techniques may result in success.
ContributorsStreet, Maya Ann (Author) / Angell, Charles Austen (Thesis director) / Chiu, Po-Lin (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05