Matching Items (4)
Filtering by

Clear all filters

157268-Thumbnail Image.png
Description
Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome

Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome editing efficiency by CRISPR/Cas9 systems. Many groups have attempted to de-silence chromatin to regulate genes and enhance DNA's accessibility to nucleases, but inconsistent results leave outstanding questions. Here, I test different types of activators, to analyze changes in chromatin features that result for chromatin opening, and to identify the critical biochemical features that support artificially generated open, transcriptionally active chromatin.

I designed, built, and tested a panel of synthetic pioneer factors (SPiFs) to open condensed, repressive chromatin with the aims of 1) activating repressed transgenes in mammalian cells and 2) reversing the inhibitory effects of closed chromatin on Cas9-endonuclease activity. Pioneer factors are unique in their ability to bind DNA in closed chromatin. In order to repurpose this natural function, I designed SPiFs from a Gal4 DNA binding domain, which has inherent pioneer functionality, fused with chromatin-modifying peptides with distinct functions.

SPiFs with transcriptional activation as their primary mechanism were able to reverse this repression and induced a stably active state. My work also revealed the active site from proto-oncogene MYB as a novel transgene activator. To determine if MYB could be used generally to restore transgene expression, I fused it to a deactivated Cas9 and targeted a silenced transgene in native heterochromatin. The resulting activator was able to reverse silencing and can be chemically controlled with a small molecule drug.

Other SPiFs in my panel did not increase gene expression. However, pretreatment with several of these expression-neutral SPiFs increased Cas9-mediated editing in closed chromatin, suggesting a crucial difference between chromatin that is accessible and that which contains genes being actively transcribed. Understanding this distinction will be vital to the engineering of stable transgenic cell lines for product production and disease modeling, as well as therapeutic applications such as restoring epigenetic order to misregulated disease cells.
ContributorsBarrett, Cassandra M (Author) / Haynes, Karmella A (Thesis advisor) / Rege, Kaushal (Committee member) / Mills, Jeremy (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2019
134534-Thumbnail Image.png
Description
This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develo

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.
ContributorsGupta, Saumya (Co-author) / Rege, Kaushal (Co-author, Thesis director) / Pushpavanam, Karthik (Co-author, Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
187385-Thumbnail Image.png
Description
The use of mRNA for therapeutic purposes has gained significant attention due to its potential to treat a wide range of diseases, including cancer, infectious diseases, and genetic disorders. However, the efficient delivery of mRNA to target cells remains a major challenge, and delivery of mRNA faces major issues such

The use of mRNA for therapeutic purposes has gained significant attention due to its potential to treat a wide range of diseases, including cancer, infectious diseases, and genetic disorders. However, the efficient delivery of mRNA to target cells remains a major challenge, and delivery of mRNA faces major issues such as rapid degradation and poor cellular uptake. Aminoglycoside-derived lipopolymer nanoparticles (LPNs) have been shown as a promising platform for plasmid DNA (pDNA) delivery due to their stability, biocompatibility, and ability to encapsulate mRNA. The current study aims to develop and optimize LPNs formulation for the delivery of mRNA in aggressive cancer cells, using a combination of chemical synthesis, physicochemical characterization, and in vitro biological assays. From a small library of aminoglycoside-derived lipopolymers, the lead lipopolymers were screened for the efficient delivery of mRNA. The complexes were synthesized with different ratios of lipopolymers to mRNA. The appropriate binding ratios of lipopolymers and mRNA were determined by gel electrophoresis. The complexes were characterized using dynamic light scattering (DLS) and zeta potential. The transgene expression efficacy of polymers was evaluated using in vitro bioluminescence assay. The toxicity of LPNs and LPNs-mRNA complexes was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The current study comprehensively investigates the optimization of the LPNs-mRNA formulation for enhanced efficacy in transgene expression in human advanced-stage melanoma cell lines.
ContributorsWubhayavedantapuram, Revanth (Author) / Rege, Kaushal (Thesis advisor) / Acharya, Abhinav (Committee member) / Yaron, Jordan (Committee member) / Arizona State University (Publisher)
Created2023
161247-Thumbnail Image.png
Description
The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed and should ideally not use toxic reagents or create toxic

The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed and should ideally not use toxic reagents or create toxic by-products. The traditional methods of synthesizing nanoparticles generally are energy inefficient, requires stringent conditions such as high temperature, pressure or extreme pH and often produces toxic by-products. Although there exist a few solution-based methods to solve this problem, there is one avenue which has recently gained attention for nanoparticle synthesis: using biomolecules to facilitate nanomaterials synthesis. Using biomolecules for synthesis can provide a template to guide the nucleation process and helps to keep conditions biocompatible while also combining the step of functionalization of the nanoparticle with its synthesis through the biomolecule itself. The dissertation focuses on studying the bio-templated synthesis of two such noble metal nanoparticle which have biomedical applications: gold and platinum. In chapter 2, Gold Nanoparticles (GNP), with long-term stability, were synthesized using Maltose Binding Protein (MBP) as templating agent. The site of gold interaction on MBP was identified by X-ray crystallography. A novel gold binding peptide, AT1 (YPFGGSGGSGM), was designed based on the orientation of the residues in the gold binding site, identified through crystallography. This designed peptide was also shown to have stabilized and affected the growth rate of GNP formation, in similar manner to MBP. Further in chapter 3, a nanosensor was formulated using a variation of this GNP-MBP system, to detect and measure ionizing radiation dose for cancer radiation therapy. Upon exposure to therapeutic levels of ionizing radiation, the MBP‐based sensor system formed gold nanoparticles with a dose‐dependent color that could be used to predict the amount of delivered X‐ray dose. In chapter 4, a similar system of protein templated synthesis was introduced for platinum nanoparticle (PtNP). Here, GroEL, a large homo-tetradecamer chaperone from E.coli, was used as templating and stabilizing agent for reduction of K2PtCl4 ions to form PtNP. To understand how GroEL interacts with the PtNPs and thereby stabilizes them, single-particle cryo-electron microscopy technique was used to model the complex in solution. A 3.8-Å resolution 3D cryo-EM map of GroEL depicting the location of PtNP inside its central cylindrical cavity was obtained. Fitting a GroEL model to the map revealed Arginine-268 from two adjacent subunits of GroEL interacting with the PtNP surface. Finally in chapter 5, a solution to the potential issues of single particle data processing on protein nanoparticle complexes, specifically with 2D classification, was developed by creating masking algorithms.
ContributorsThaker, Amar Nilkamal (Author) / Nannenga, Brent L (Thesis advisor) / Acharya, Abhinav (Committee member) / Torres, Cesar (Committee member) / Mills, Jeremy (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2020