Matching Items (15)
Filtering by

Clear all filters

151280-Thumbnail Image.png
Description
The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical

The work presented in this thesis covers the synthesis and characterization of an ionomer that is applicable to zinc-air batteries. Polysulfone polymer is first chloromethylated and then quaternized to create an ion-conducting polymer. Nuclear magnetic resonance (NMR) spectra indicates that the degree of chloromethylation was 114%. The chemical and physical properties that were investigated include: the ionic conductivity, ion exchange capacity, water retention capacity, diameter and thickness swelling ratios, porosity, glass transition temperature, ionic conductivity enhanced by free salt addition, and the concentration and diffusivity of oxygen within the ionomer. It was found that the fully hydrated hydroxide form of the ionomer had a room temperature ionic conductivity of 39.92mS/cm while the chloride form had a room temperature ionic conductivity of 11.80mS/cm. The ion exchange capacity of the ionomer was found to be 1.022mmol/g. The water retention capacity (WRC) of the hydroxide form was found to be 172.6% while the chloride form had a WRC of 67.9%. The hydroxide form of the ionomer had a diameter swelling ratio of 34% and a thickness swelling ratio of 55%. The chloride form had a diameter swelling ratio of 32% and a thickness swelling ratio of 28%. The largest pore size in the ionomer was found to be 32.6nm in diameter. The glass transition temperature of the ionomer is speculated to be 344°C. A definite measurement could not be made. The room temperature ionic conductivity at 50% relative humidity was improved to 12.90mS/cm with the addition of 80% free salt. The concentration and diffusivity of oxygen in the ionomer was found to be 1.3 ±0.2mMol and (0.49 ±0.15)x10-5 cm2/s respectively. The ionomer synthesized in this research had material properties and performance that is comparable to other ionomers reported in the literature. This is an indication that this ionomer is suitable for further study and integration into a zinc-air battery. This thesis is concluded with suggestions for future research that is focused on improving the performance of the ionomer as well as improving the methodology.
ContributorsPadilla, Manuel (Author) / Friesen, Cody A (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2012
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152507-Thumbnail Image.png
Description
Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy (TEM). X-ray diffraction and scanning electron microscopy studies were also performed to understand the phase and morphology of the nanotubes. As prepared TiO2 nanotubes supported on Ti metal substrate were amorphous, during the heat treatment in the ex-situ furnace nanotubes transform to anatase at 450 oC and transformed to rutile when heated to 800 oC. TiO2 nanotubes that were heat treated in an in-situ environmental TEM, transformed to anatase at 400 oC and remain anatase even up to 800 oC. In both ex-situ an in-situ case, the morphology of the nanotubes drastically changed from a continuous tubular structure to aggregates of individual nanoparticles. The difference between the ex-situ an in-situ treatments and their effect on the phase transformation is discussed. Metal doping is one of the effective ways to improve the photocatalytic performance. Several approaches were performed to get metal loading on to the TiO2 nanotubes. Mono-dispersed platinum nanoparticles were deposited on the TiO2 nanopowder and nanotubes using photoreduction method. Photo reduction for Ag and Pt bimetallic nanoparticles were also performed on the TiO2 powders.
ContributorsSantra, Sanjitarani (Author) / Crozier, Peter A. (Thesis advisor) / Carpenter, Ray (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2014
152622-Thumbnail Image.png
Description
Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial catalytic centers. PNA-polypeptide conjugates were synthesized directly using microwave assisted solid phase synthesis or alternatively PNA linkers were conjugated to biologically expressed proteins using chemical crosslinking. The PNA-polypeptides hybridized to the preassembled DNA nanocage at room tempera-ture or 11 ⁰C and could be assembled in a stepwise fashion. Time resolved fluorescence anisotropy and gel electrophoresis were used to determine that a negatively charged az-urin protein was repelled outside of the negatively charged DNA nanocage, while a posi-tively charged cytochrome c protein was retained inside. Spectroelectrochemistry and an in-gel luminol oxidation assay demonstrated the cytochrome c protein remained active within the DNA nanocage and its redox potential decreased modestly by 10 mV due to the presence of the DNA nanocage. These results demonstrate the benign PNA assembly conditions are ideal for preserving polypeptide structure and function, and will facilitate the polypeptide-based assembly of artificial catalytic centers inside a stable DNA nanocage. A prospective application of assembling multiple cyclic γ-PNA-peptides to mimic the oxygen-evolving complex (OEC) catalytic active site from photosystem II (PSII) is described. In this way, the robust catalytic capacity of PSII could be utilized, without suffering the light-induced damage that occurs by the photoreactions within PSII via triplet state formation, which limits the efficiency of natural photosynthesis. There-fore, this strategy has the potential to revolutionize the process of designing and building robust catalysts by leveraging nature's recipes, and also providing a flexible and con-trolled artificial environment that might even improve them further towards commercial viability.
ContributorsFlory, Justin David (Author) / Fromme, Petra (Thesis advisor) / Yan, Hao (Committee member) / Buttry, Daniel (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2014
150314-Thumbnail Image.png
Description
Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa

Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O}). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm+ cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems.
ContributorsZeller, Robert August (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
Description
This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa).
ContributorsMickelson, Lawrence (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Venables, John (Committee member) / Arizona State University (Publisher)
Created2011
150978-Thumbnail Image.png
Description
Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and

Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.
ContributorsMcIntosh, Chelsea Lee (Author) / Jones, Anne K (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
151091-Thumbnail Image.png
Description
Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that

Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that exhibit fine property control as well as facility and efficiency in their implementation continue to be highly sought after. Here, general methods for the synthesis of nanoporous conducting materials and their characterization are presented. Antimony-doped tin oxide (ATO), a transparent conducting oxide (TCO), and nanoporous conducting carbon can be prepared through the step-wise synthesis of interpenetrating inorganic/organic networks using well-established sol-gel methodology. The one-pot method produces an inorganic gel first that encompasses a solution of organic precursors. The surface of the inorganic gel subsequently catalyzes the formation of an organic gel network that interpenetrates throughout the inorganic gel network. These mutually supporting gel networks strengthen one another and allow for the use of evaporative drying methods and heat treatments that would usually destroy the porosity of an unsupported gel network. The composite gel is then selectively treated to either remove the organic network to provide a porous inorganic network, as is the case for antimony-doped tin oxide, or the inorganic network can be removed to generate a porous carbon material. The method exhibits flexibility in that the pore structure of the final porous material can be modified through the variation of the synthetic conditions. Additionally, porous carbons of hierarchical pore size distributions can be prepared by using wet alumina gel as a template dispersion medium and as a template itself. Alumina gels exhibit thixotropy, which is the ability of a solid to be sheared to a liquid state and upon removal of the shear force, return to a solid gel state. Alumina gels were prepared and blended with monomer solutions and sacrificial template particles to produce wet gel composites. These composites could then be treated to remove the alumina and template particles to generate hierarchically porous carbon.
ContributorsVolosin, Alex (Author) / Seo, Dong-Kyun (Thesis advisor) / Buttry, Daniel (Committee member) / Gust, John D (Committee member) / Arizona State University (Publisher)
Created2012
151233-Thumbnail Image.png
Description
The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm in diameter, were synthesized by co–reduction of the salts of Au and Ag from an aqueous phase. The alloy particles were dealloyed at a series of potential by chronoamperometry in acid, and the resulting morphology and composition were characterized by electron microscopy, energy dispersive X–ray spectroscopy (EDX). In the case of the smaller particles, only surface dealloying occurred yielding a core–shell structure. A porous structure was observed for the larger particles when the potential was larger than a critical value that was within 50 mV of the thermodynamic prediction.
ContributorsLi, Xiaoqian (Author) / Sieradzki, Karl (Thesis advisor) / Crozier, Peter (Committee member) / Buttry, Daniel (Committee member) / Friesen, Cody (Committee member) / Arizona State University (Publisher)
Created2012
153887-Thumbnail Image.png
Description
The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious

The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free ZnO/Ag/MoOx electrodes was also studied. Organic solar cells on these composite electrodes revealed good optical and electrical properties, making them a promising alternative indium free and PEDOT:PSS-free organic solar cells. Lastly, inverted solar cells utilizing zinc oxide and yttrium doped zinc oxide electron transport was also created and their device properties revealed that optimum annealing conditions and yttrium doping was essential to obtain high efficiency solar cells.
ContributorsDas, Sayantan (Author) / Alford, Terry L. (Thesis advisor) / Petuskey, William (Thesis advisor) / Buttry, Daniel (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2015