Matching Items (750)
Filtering by

Clear all filters

152539-Thumbnail Image.png
Description
The slider-crank mechanism is popularly used in internal combustion engines to convert the reciprocating motion of the piston into a rotary motion. This research discusses an alternate mechanism proposed by the Wiseman Technology Inc. which involves replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allows

The slider-crank mechanism is popularly used in internal combustion engines to convert the reciprocating motion of the piston into a rotary motion. This research discusses an alternate mechanism proposed by the Wiseman Technology Inc. which involves replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allows the piston and the connecting rod to move in a straight line, creating a perfect sinusoidal motion. To analyze the performance advantages of the Wiseman mechanism, engine simulation software was used. The Wiseman engine with the hypocycloid piston motion was modeled in the software and the engine's simulated output results were compared to those with a conventional engine of the same size. The software was also used to analyze the multi-fuel capabilities of the Wiseman engine using a contra piston. The engine's performance was studied while operating on diesel, ethanol and gasoline fuel. Further, a scaling analysis on the future Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement. It was found that the existing Wiseman engine produced about 7% less power at peak speeds compared to the slider-crank engine of the same size. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. These results were concurrent with the dynamometer tests performed in the past. The 4 stroke diesel variant of the same Wiseman engine performed better than the 2 stroke gasoline version as well as the slider-crank engine in all aspects. The Wiseman engine using contra piston showed poor fuel efficiency while operating on E85 fuel. But it produced higher torque and about 1.4% more power than while running on gasoline. While analyzing the effects of the engine size on the Wiseman prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency and cylinder BMEP as their displacements increased. The 30 horsepower (HP) prototype, while operating on E85, produced the most optimum results in all aspects and the diesel variant of the same engine proved to be the most fuel efficient.
ContributorsRay, Priyesh (Author) / Redkar, Sangram (Thesis advisor) / Mayyas, Abdel Ra'Ouf (Committee member) / Meitz, Robert (Committee member) / Arizona State University (Publisher)
Created2014
152414-Thumbnail Image.png
Description
Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may

Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may be desired at component, sub-system or full system level. Two issues that are considered in this work are: 1. Information about design ideas is incomplete, informal and sketchy 2. Designers often work at multiple levels; different aspects or subsystems may be at different levels of abstraction Thus, high fidelity analysis and simulation tools are not appropriate for this purpose. This thesis looks at the requirements for a simulation tool and how it could facilitate concept evaluation. The specific tasks reported in this thesis are: 1. The typical types of information available after an ideation session 2. The typical types of technical evaluations done in early stages 3. How to conduct low fidelity design evaluation given a well-defined feasibility question A computational tool for supporting idea evaluation was designed and implemented. It was assumed that the results of the ideation session are represented as a morphological chart and each entry is expressed as some combination of a sketch, text and references to physical effects and machine components. Approximately 110 physical effects were identified and represented in terms of algebraic equations, physical variables and a textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 16 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works. textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 15 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works.
ContributorsKhorshidi, Maryam (Author) / Shah, Jami J. (Thesis advisor) / Wu, Teresa (Committee member) / Gel, Esma (Committee member) / Arizona State University (Publisher)
Created2014
152600-Thumbnail Image.png
Description
This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this

This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this thesis are fully compatible with the ASME Y14.5 Standard. A pattern of square profiles, both linear and 2D, is used throughout this thesis to illustrate the idea of constructing the T-Maps for line profiles. The Standard defines two ways of tolerancing a pattern of profiles - Composite Tolerancing and Multiple Single Segment Tolerancing. Further, in the composite tolerancing scheme, there are two different ways to control the entire pattern - repeating a single datum or two datums in the secondary datum reference frame. T-Maps are constructed for all the different specifications. The Standard also describes a way to control the coplanarity of discontinuous surfaces using a profile tolerance and T-Maps have been developed. Since verification of manufactured parts relative to the tolerance specifications is crucial, a least squares fit approach, which was developed earlier for line profiles, has been extended to patterns of line profiles. For a pattern, two tolerances are specified, and the manufactured profile needs to lie within the tolerance zones established by both of these tolerances. An i-Map representation of the manufactured variation, located within the T-Map is also presented in this thesis.
ContributorsRao, Shyam Subramanya (Author) / Davidson, Joseph K. (Thesis advisor) / Arizona State University (Publisher)
Created2014
152554-Thumbnail Image.png
Description
Spider dragline silk is well known for its outstanding mechanical properties - a combination of strength and extensibility that makes it one of the toughest materials known. Two proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2), comprise dragline silk fibers. There has been considerable focus placed on understanding the

Spider dragline silk is well known for its outstanding mechanical properties - a combination of strength and extensibility that makes it one of the toughest materials known. Two proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2), comprise dragline silk fibers. There has been considerable focus placed on understanding the source of spider silk's unique mechanical properties by investigating the protein composition, molecular structure and dynamics. Chemical compositional heterogeneity of spider silk fiber is critical to understand as it provides important information for the interactions between MaSp1 and MaSp2. Here, the amino acid composition of dragline silk protein was precisely determined using a solution-state nuclear magnetic resonance (NMR) approach on hydrolyzed silk fibers. In a similar fashion, solution-state NMR was applied to probe the "13"C/"15"N incorporation in silk, which is essential to understand for designing particular solid-state NMR methods for silk structural characterization. Solid-state NMR was used to elucidate silk protein molecular dynamics and the supercontraction mechanism. A "2"H-"13"C heteronuclear correlation (HETCOR) solid-state NMR technique was developed to extract site-specific "2"H quadrupole patterns and spin-lattice relaxation rates for understanding backbone and side-chain dynamics. Using this technique, molecular dynamics were determined for a number of repetitive motifs in silk proteins - Ala residing nanocrystalline &beta-sheet; domains, 3"1"-helical regions, and, Gly-Pro-Gly-XX &beta-turn; motifs. The protein backbone and side-chain dynamics of silk fibers in both dry and wet states reveal the impact of water on motifs with different secondary structures. Spider venom is comprised of a diverse range of molecules including salts, small organics, acylpolyamines, peptides and proteins. Neurotoxins are an important family of peptides in spider venom and have been shown to target and modulate various ion channels. The neurotoxins are Cys-rich and share an inhibitor Cys knot (ICK) fold. Here, the molecular structure of one G. rosea tarantula neurotoxin, GsAF2, was determined by solution-state NMR. In addition, the interaction between neurotoxins and model lipid bilayers was probed with solid-state NMR and negative-staining (NS) transmission electron microscopy (TEM). It is shown that the neurotoxins influence lipid bilayer assembly and morphology with the formation of nanodiscs, worm-like micelles and small vesicles.
ContributorsShi, Xiangyan (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Levitus, Marcia (Committee member) / Marzke, Robert F (Committee member) / Arizona State University (Publisher)
Created2014
152562-Thumbnail Image.png
Description
Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified

Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring Machines (CMMs) use feature fitting algorithms that incorporate least square estimates as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance class is not available. Therefore, a Library of algorithms is developed to aid the process of feature fitting, and tolerance verification. This paper addresses linear, planar, circular, and cylindrical features only. This set of algorithms described conforms to the international Standards for GD&T.; In order to reduce the number of points to be analyzed, and to identify the possible candidate points for linear, circular and planar features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev cylinders, geometric search algorithms are used. Algorithms are divided into three major categories: least square, unconstrained, and constrained fits. Primary datums require one sided unconstrained fits for their verification. Secondary datums require one sided constrained fits for their verification. For size and other tolerance verifications, we require both unconstrained and constrained fits
ContributorsMohan, Prashant (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph K. (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2014
152304-Thumbnail Image.png
Description
X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease resulting in muscle atrophy and paralysis via degeneration of motor neurons in the spinal cord. In this work, we used X-ray diffraction technique to solve the structures of the three variant of the of SMN protein, namely SMN 1-4, SMN-WT, and SMN-Δ7. The SMN 1-4, SMN-WT, and SMN-Δ7 crystals were diffracted to 2.7 Å, 5.5 Å and 3.0 Å, respectively. The three-dimensional structures of the three SMN proteins have been solved. The FMO protein from Pld. phaeum is a water soluble protein that is embedded in the cytoplasmic membrane and serves as an energy transfer funnel between the chlorosome and the reaction center. The FMO crystal diffracted to 1.99Å resolution and the three-dimensional structure has been solved. In previous studies, double mutant, DX, protein was purified and crystallized in the presence of ATP (Simmons et al., 2010; Smith et al. 2007). DX is a synthetic ATP binding protein which resulting from a random selection of DNA library. In this study, DX protein was purified and crystallized without the presence of ATP to investigate the conformational change in DX structure. The crystals of DX were diffracted to 2.5 Å and the three-dimensional structure of DX has been solved.
ContributorsSeng, Chenda O (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2013
152502-Thumbnail Image.png
Description
Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used for policy making, the inherent biases in the models have not been systematically examined. The main objective of this study is to validate the CMIP5 simulations of the 20th century climate with observations to quantify the biases and uncertainties in state-of-the-art climate models. Specifically, this work focuses on three major features in the atmosphere: the jet streams over the North Pacific and Atlantic Oceans and the low level jet (LLJ) stream over central North America which affects the weather in the United States, and the near-surface wind field over North America which is relevant to energy applications. The errors in the model simulations of those features are systematically quantified and the uncertainties in future predictions are assessed for stakeholders to use in climate applications. Additional atmospheric model simulations are performed to determine the sources of the errors in climate models. The results reject a popular idea that the errors in the sea surface temperature due to an inaccurate ocean circulation contributes to the errors in major atmospheric jet streams.
ContributorsKulkarni, Sujay (Author) / Huang, Huei-Ping (Thesis advisor) / Calhoun, Ronald (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2014
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152375-Thumbnail Image.png
Description
The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been shown that bleomycin has the ability to selectively target tumor cells over their non-malignant counterparts. Pyrimidoblamic acid, the N-terminal metal ion binding domain of bleomycin is known to be the moiety that is responsible for O2 activation and the subsequent chemistry leading to DNA strand scission and overall antitumor activity. Chapter 1 describes bleomycin and related DNA targeting antitumor agents as well as the specific structural domains of bleomycin. Various structural analogues of pyrimidoblamic acid were synthesized and subsequently incorporated into their corresponding full deglycoBLM A6 derivatives by utilizing a solid support. Their activity was measured using a pSP64 DNA plasmid relaxation assay and is summarized in Chapter 2. The specifics of bleomycin—DNA interaction and kinetics were studied via surface plasmon resonance and are presented in Chapter 3. By utilizing carefully selected 64-nucleotide DNA hairpins with variable 16-mer regions whose sequences showed strong binding in past selection studies, a kinetic profile was obtained for several BLMs for the first time since bleomycin was discovered in 1966. The disaccharide moiety of bleomycin has been previously shown to be a specific tumor cell targeting element comprised of L-gulose-D-mannose, especially between MCF-7 (breast cancer cells) and MCF-10A ("normal" breast cells). This phenomenon was further investigated via fluorescence microscopy using multiple cancerous cell lines with matched "normal" counterparts and is fully described in Chapter 4.
ContributorsBozeman, Trevor C (Author) / Hecht, Sidney M. (Thesis advisor) / Chaput, John (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152470-Thumbnail Image.png
Description
DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the

DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.
ContributorsLi, Wei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014