Matching Items (341)
Filtering by

Clear all filters

151872-Thumbnail Image.png
Description
Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this

Since Darwin popularized the evolution theory in 1895, it has been completed and studied through the years. Starting in 1990s, evolution at molecular level has been used to discover functional molecules while studying the origin of functional molecules in nature by mimicing the natural selection process in laboratory. Along this line, my Ph.D. dissertation focuses on the in vitro selection of two important biomolecules, deoxynucleotide acid (DNA) and protein with binding properties. Chapter two focuses on in vitro selection of DNA. Aptamers are single-stranded nucleic acids that generated from a random pool and fold into stable three-dimensional structures with ligand binding sites that are complementary in shape and charge to a desired target. While aptamers have been selected to bind a wide range of targets, it is generally thought that these molecules are incapable of discriminating strongly alkaline proteins due to the attractive forces that govern oppositely charged polymers. By employing negative selection step to eliminate aptamers that bind with off-target through charge unselectively, an aptamer that binds with histone H4 protein with high specificity (>100 fold)was generated. Chapter four focuses on another functional molecule: protein. It is long believed that complex molecules with different function originated from simple progenitor proteins, but very little is known about this process. By employing a previously selected protein that binds and catalyzes ATP, which is the first and only protein that was evolved completely from random pool and has a unique α/β-fold protein scaffold, I fused random library to the C-terminus of this protein and evolved a multi-domain protein with decent properties. Also, in chapter 3, a unique bivalent molecule was generated by conjugating peptides that bind different sites on the protein with nucleic acids. By using the ligand interactions by nucleotide conjugates technique, off-the shelf peptide was transferred into high affinity protein capture reagents that mimic the recognition properties of natural antibodies. The designer synthetic antibody amplifies the binding affinity of the individual peptides by ∼1000-fold to bind Grb2 with a Kd of 2 nM, and functions with high selectivity in conventional pull-down assays from HeLa cell lysates.
ContributorsJiang, Bing (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2013
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151711-Thumbnail Image.png
Description
Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater than 40°C. ELISA against gp120 and RNase B demonstrate both proteins' ability to bind high mannose glycans. To more specifically determine the binding specificity of each protein, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-CVN's low nanomolar activity. Overall, these experiments show that CV-N Domain B can be mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first generation information can be used to produce glycan-specific lectins for a variety of applications.
ContributorsRuben, Melissa (Author) / Ghirlanda, Giovanna (Thesis advisor) / Allen, James (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2013
152182-Thumbnail Image.png
Description
There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water and sunlight. As a part of the photosynthetic electron transport chain (PETC) of the green algae Chlamydomonas reinhardtii, water is split via Photosystem II (PSII) and the electrons flow through a series of electron transfer cofactors in cytochrome b6f, plastocyanin and Photosystem I (PSI). The terminal electron acceptor of PSI is ferredoxin, from which electrons may be used to reduce NADP+ for metabolic purposes. Concomitant production of a H+ gradient allows production of energy for the cell. Under certain conditions and using the endogenous hydrogenase, excess protons and electrons from ferredoxin may be converted to molecular hydrogen. In this work it is demonstrated both that certain mutations near the quinone electron transfer cofactor in PSI can speed up electron transfer through the PETC, and also that a native [FeFe]-hydrogenase can be expressed in the C. reinhardtii chloroplast. Taken together, these research findings form the foundation for the design of a PSI-hydrogenase fusion for the direct and continuous photo-production of hydrogen in vivo.
ContributorsReifschneider, Kiera (Author) / Redding, Kevin (Thesis advisor) / Fromme, Petra (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2013
152086-Thumbnail Image.png
Description
The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome enabled the incorporation of both alpha-D-amino acids and beta-amino acids into full length protein. Described in Chapter 2 are five modified ribosomes having modifications in the peptidyltrasnferase center in the 23S rRNA. These modified ribosomes successfully incorporated five different beta-amino acids (2.1 - 2.5) into E. coli dihydrofolate reductase (DHFR). The second project (Chapter 3) focused on the study of the modified ribosomes facilitating the incorporation of the dipeptide glycylphenylalanine (3.25) and fluorescent dipeptidomimetic 3.26 into DHFR. These ribosomes also had modifications in the peptidyltransferase center in the 23S rRNA of the 50S ribosomal subunit. The modified DHFRs having beta-amino acids 2.3 and 2.5, dipeptide glycylphenylalanine (3.25) and dipeptidomimetic 3.26 were successfully characterized by the MALDI-MS analysis of the peptide fragments produced by "in-gel" trypsin digestion of the modified proteins. The fluorescent spectra of the dipeptidomimetic 3.26 and modified DHFR having fluorescent dipeptidomimetic 3.26 were also measured. The type I and II DNA topoisomerases have been firmly established as effective molecular targets for many antitumor drugs. A "classical" topoisomerase I or II poison acts by misaligning the free hydroxyl group of the sugar moiety of DNA and preventing the reverse transesterfication reaction to religate DNA. There have been only two classes of compounds, saintopin and topopyrones, reported as dual topoisomerase I and II poisons. Chapter 4 describes the synthesis and biological evaluation of topopyrones. Compound 4.10, employed at 20 µM, was as efficient as 0.5 uM camptothecin, a potent topoisomerase I poison, in stabilizing the covalent binary complex (~30%). When compared with a known topoisomerase II poison, etoposide (at 0.5 uM), topopyorone 4.10 produced similar levels of stabilized DNA-enzyme binary complex (~34%) at 5 uM concentration.
ContributorsMaini, Rumit (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152097-Thumbnail Image.png
Description
After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection.

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.
ContributorsKrishnakumar, Padmini (Author) / Lindsay, Stuart (Thesis advisor) / He, Jin (Committee member) / Vaiana, Sara (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2013
152245-Thumbnail Image.png
Description
The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated.
ContributorsNangreave, Ryan Christopher (Author) / Hecht, Sidney M. (Thesis advisor) / Yan, Hao (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
151745-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states,

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
ContributorsJuday, Reid (Author) / Ponce, Fernando A. (Thesis advisor) / Drucker, Jeff (Committee member) / Mccartney, Martha R (Committee member) / Menéndez, Jose (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013