Matching Items (52)
Filtering by

Clear all filters

134159-Thumbnail Image.png
DescriptionThis project is designed to generate enthusiasm for science among refugee students in hopes of inspiring them to continue learning science as well as to help them with their current understanding of their school science subject matter.
ContributorsSipes, Shannon Paige (Author) / O'Flaherty, Katherine (Thesis director) / Gregg, George (Committee member) / School of Molecular Sciences (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135187-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few

Transient Receptor Potential (TRP) ion channels are a diverse family of nonselective, polymodal sensors in uni- and multicellular eukaryotes that are implicated in an assortment of biological contexts and human disease. The cold-activated TRP Melastatin-8 (TRPM8) channel, also recognized as the human body's primary cold sensor, is among the few TRP channels responsible for thermosensing. Despite sustained interest in the channel, the mechanisms underlying TRPM8 activation, modulation, and gating have proved challenging to study and remain poorly understood. In this thesis, I offer data collected on various expression, extraction, and purification conditions tested in E. Coli expression systems with the aim to optimize the generation of a structurally stable and functional human TRPM8 pore domain (S5 and S6) construct for application in structural biology studies. These studies, including the biophysical technique nuclear magnetic spectroscopy (NMR), among others, will be essential for elucidating the role of the TRPM8 pore domain in in regulating ligand binding, channel gating, ion selectively, and thermal sensitivity. Moreover, in the second half of this thesis, I discuss the ligation-independent megaprimer PCR of whole-plasmids (MEGAWHOP PCR) cloning technique, and how it was used to generate chimeras between TRPM8 and its nearest analog TRPM2. I review steps taken to optimize the efficiency of MEGAWHOP PCR and the implications and unique applications of this novel methodology for advancing recombinant DNA technology. I lastly present preliminary electrophysiological data on the chimeras, employed to isolate and study the functional contributions of each individual transmembrane helix (S1-S6) to TRPM8 menthol activation. These studies show the utility of the TRPM8\u2014TRPM2 chimeras for dissecting function of TRP channels. The average current traces analyzed thus far indicate that the S2 and S3 helices appear to play an important role in TRPM8 menthol modulation because the TRPM8[M2S2] and TRPM8[M2S3] chimeras significantly reduce channel conductance in the presence of menthol. The TRPM8[M2S4] chimera, oppositely, increases channel conductance, implying that the S4 helix in native TRPM8 may suppress menthol modulation. Overall, these findings show that there is promise in the techniques chosen to identify specific regions of TRPM8 crucial to menthol activation, though the methods chosen to study the TRPM8 pore independent from the whole channel may need to be reevaluated. Further experiments will be necessary to refine TRPM8 pore solubilization and purification before structural studies can proceed, and the electrophysiology traces observed for the chimeras will need to be further verified and evaluated for consistency and physiological significance.
ContributorsWaris, Maryam Siddika (Author) / Van Horn, Wade (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135432-Thumbnail Image.png
Description
Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one

Students Organize for Syria (SOS) is the student led initiative for Syria. With 18 registered chapters across the United States, this student organization is targeting a multidimensional cause by different means. Though it is now a national movement, it started off with one group at Arizona State University, with one student. Zana Alattar, founder and student director of SOS, tells the story of how she took an ASU organization, Save Our Syrian Freedom (SOS Freedom), to the national level as SOS. As a pre-medical student, she also combines her work in human rights with her future in healthcare. After all, health and human rights have long maintained a synergistic relationship.
ContributorsAlattar, Zana (Author) / Graff, Sarah (Thesis director) / McClurg, Sharolyn (Committee member) / School of Molecular Sciences (Contributor) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132463-Thumbnail Image.png
Description
The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher

The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher sulfate concentration where the yeast grows quickly, with or without the sulfate transporters. The lowest sulfate concentration where the yeast without the sulfate transporters is able to grow was determined to be 2-4 mM, however, this range can likely be refined by more quantitative analytical methods. At a sulfate concentration of 20 mM sulfate or higher, the yeast is able to grow quickly without high-affinity sulfate transporters. The next step in the project is to re-introduce the Sulp1 and Sulp2 genes into the yeast, so that growth in low and high sulfate conditions can be compared with and without the Sulp1 and Sulp2 proteins. The long-term goals of the project are to bring experience with yeast to Dr. Nannenga’s structural discovery lab, to determine if yeast sulfate transporters respond in the same way to drug candidates as human sulfate transporters, and to determine the structure of the proteins using cryo-electron microscopy.
ContributorsCall, Nicolas I (Author) / Nannenga, Brent (Thesis director) / Wang, Xuan (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133828-Thumbnail Image.png
Description
Dante's Divine Comedy has been around for eight centuries, and its imaginative vision of the afterlife truly resembled the ideology of 13th century. However, time has passed, and now, in 21st century, the societies have made major technological advancements that distinct themselves from the past. Consequently, with recent technology in

Dante's Divine Comedy has been around for eight centuries, and its imaginative vision of the afterlife truly resembled the ideology of 13th century. However, time has passed, and now, in 21st century, the societies have made major technological advancements that distinct themselves from the past. Consequently, with recent technology in mind, one could imagine an afterlife with robotic Minos and Cerberus, and possibly the circles of hell residing within an earth resembling death star that is controlled automatically using artificial intelligence. The symbolic representation of punishments could have been altered throughout time, and more recent criminals may be seen in the circles of hell. By identifying and correlating contemporary style of art with a classic literature such as Dante's Divine Comedy, one could better understand the essence of literature without the disconnect from current world, and appreciate the deep underlying ideology that Dante offers within his literature. Sculptures that encompass nine circles of hell and heaven would demonstrate structural aptitude and symbolic representation of what Dante would have imagined if he were to write his literature in the 21st century. Throughout the project, connection between the literature and the sculptures is observed. Some of the sculptures were meant to be abstract and some literal. Even though the medium used in each of the sculptures were different, the correlation between each sculpture unifies everything together into one theme, Dante's Divine Comedy.
ContributorsKim, David (Author) / Neubauer, Mary (Thesis director) / Harp, Hilary (Committee member) / School of Molecular Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134743-Thumbnail Image.png
Description
The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.
ContributorsRabinowitz, Joshua Avraam (Author) / Diehnelt, Chris (Thesis director) / Johnston, Stephen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134567-Thumbnail Image.png
Description
The parameters of microwave-assisted acid hydrolysis (MAAH) and 1H NMR highly affect the quantitative analysis of protein hydrolysates. Microwave-induction source, NMR spectral resolution, and data analysis are key parameters in the nuclear magnetic resonance – amino acid analysis (NMR-AAA) workflow where errors accrue due to lack of an optimized protocol.

The parameters of microwave-assisted acid hydrolysis (MAAH) and 1H NMR highly affect the quantitative analysis of protein hydrolysates. Microwave-induction source, NMR spectral resolution, and data analysis are key parameters in the nuclear magnetic resonance – amino acid analysis (NMR-AAA) workflow where errors accrue due to lack of an optimized protocol. Hen egg white lysozyme was hydrolyzed using an 800W domestic microwave oven for varying time points between 10-25 minutes, showing minimal protein hydrolysis after extended time periods. Studies on paramagnetic doping with varying amounts of gadolinium chloride for increased NMR resolution resulted in little T1 reduction in a majority of amino acids and resulted in significant line broadening in concentrations above 1µM. The use of the BAYESIL analysis tool with HOD suppressed 1H-NMR spectra resulted in misplaced template peaks and errors greater than 1% for 10 of 13 profiled amino acids with the highest error being 7.6% (Thr). Comparatively, Chenomx NMR Suite (v7.1) analysis resulted in errors of less than 1% for 9 of 13 profiled amino acids with a highest error value of 3.6% (Lys). Using the optimized protocol, hen egg white lysozyme C was identified at rank 1 with a score of 64 in a Gallus gallus species wide AACompIdent search. This technique reduces error associated with sample handling relative to previously used amino acid analysis (AAA) protocols and requires no derivatization or additional processing of the sample prior to analysis.
ContributorsJordan, Jacob Smith (Author) / Yarger, Jeffery (Thesis director) / Van Horn, Wade (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134435-Thumbnail Image.png
Description
Integrin is a protein in cells that manage cell adhesion. They are crucial to the biochemical functions of cells. L 2 is one type of integrin. Its I domain is responsible for ligand binding. Scientists understand how Alpha L I domain binds Mg2+ at a pH of 7 but not

Integrin is a protein in cells that manage cell adhesion. They are crucial to the biochemical functions of cells. L 2 is one type of integrin. Its I domain is responsible for ligand binding. Scientists understand how Alpha L I domain binds Mg2+ at a pH of 7 but not in acidic environments. Knowing the specificity of integrin at a lower pH is important because when tissues become inflamed, they release acidic compounds. We have cloned, expressed, and purified L I-domain and using NMR analysis, we determined that wild type Alpha L I domain does not bind to Mg2+ at a pH of 5.
ContributorsALAM, RAHAT (Author) / Wang, Xu (Thesis director) / Podolnikova, Nataly (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134659-Thumbnail Image.png
Description
Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016,

Gle1 is an mRNP export mediator with major activity localized to the nuclear pore complex in eukaryotic cells. The protein's high preservation across vast phylogenetic distances allows us to approximate research on the properties of yeast Gle1 (yGle1) with those of human Gle1 (hGle1). Research at Vanderbilt University in 2016, which provides the research basis of this thesis, suggests that the coiled-coil domain of yGle1 is best crystallized in dicationic aqueous conditions of pH ~8.0 and 10\u201420% PEG 8000. Further exploration of crystallizable microconditions revealed a favorability toward lower pH and lower PEG concentration. Following the discovery of the protein's native crystallography conditions, a comprehensive meta-analysis of scientific literature on Gle1 was conducted on the association of Gle1 mutations with neuron disease.
ContributorsGaetano, Philip Pasquale (Author) / Foy, Joseph (Thesis director) / Dawson, T. Renee (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133531-Thumbnail Image.png
Description
Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.
ContributorsBrooks, Meilia Catherine (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Ghirlanda, Giovanna (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05