Matching Items (188)

Filtering by

Clear all filters

149699-Thumbnail Image.png

Synthesis and evaluation of a new class of cancer chemotherapeutics based on purine-like extended amidines

Description

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP)

A potential new class of cancer chemotherapeutic agents has been synthesized by varying the 2 position of a benzimidazole based extended amidine. Compounds 6-amino-2-chloromethyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1A) and 6-amino-2-hydroxypropyl-4-imino-1-(2-methansulfonoxyethyl)-5-methyl-1H-benzimidazole-7-one (1B) were assayed at the National Cancer Institute's (NCI) Developmental Therapeutic Program (DTP) and found to be cytotoxic at sub-micromolar concentrations, and have shown between a 100 and a 1000-fold increase in specificity towards lung, colon, CNS, and melanoma cell lines. These ATP mimics have been found to correlate with sequestosome 1 (SQSTM1), a protein implicated in drug resistance and cell survival in various cancer cell lines. Using the DTP COMPARE algorithm, compounds 1A and 1B were shown to correlate to each other at 77%, but failed to correlate with other benzimidazole based extended amidines previously synthesized in this laboratory suggesting they operate through a different biological mechanism.

Contributors

Agent

Created

Date Created
2011

149763-Thumbnail Image.png

Mapping the RNA-protein interface in telomerase RNP

Description

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.

Contributors

Agent

Created

Date Created
2011

152245-Thumbnail Image.png

Novel strategies for producing proteins with non-proteinogenic amino acids

Description

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated.

Contributors

Agent

Created

Date Created
2013

152304-Thumbnail Image.png

Studies on the three-dimensional structures of proteins using X-ray crystallography

Description

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum)

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease resulting in muscle atrophy and paralysis via degeneration of motor neurons in the spinal cord. In this work, we used X-ray diffraction technique to solve the structures of the three variant of the of SMN protein, namely SMN 1-4, SMN-WT, and SMN-Δ7. The SMN 1-4, SMN-WT, and SMN-Δ7 crystals were diffracted to 2.7 Å, 5.5 Å and 3.0 Å, respectively. The three-dimensional structures of the three SMN proteins have been solved. The FMO protein from Pld. phaeum is a water soluble protein that is embedded in the cytoplasmic membrane and serves as an energy transfer funnel between the chlorosome and the reaction center. The FMO crystal diffracted to 1.99Å resolution and the three-dimensional structure has been solved. In previous studies, double mutant, DX, protein was purified and crystallized in the presence of ATP (Simmons et al., 2010; Smith et al. 2007). DX is a synthetic ATP binding protein which resulting from a random selection of DNA library. In this study, DX protein was purified and crystallized without the presence of ATP to investigate the conformational change in DX structure. The crystals of DX were diffracted to 2.5 Å and the three-dimensional structure of DX has been solved.

Contributors

Agent

Created

Date Created
2013

151711-Thumbnail Image.png

Directed evolution of gp120 binding mutants of the lectin Cyanovirin-N

Description

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater than 40°C. ELISA against gp120 and RNase B demonstrate both proteins' ability to bind high mannose glycans. To more specifically determine the binding specificity of each protein, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-CVN's low nanomolar activity. Overall, these experiments show that CV-N Domain B can be mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first generation information can be used to produce glycan-specific lectins for a variety of applications.

Contributors

Agent

Created

Date Created
2013

152182-Thumbnail Image.png

Modification of electron transfer proteins in the Chlamydomonas reinhardtii chloroplast for alternative fuel development

Description

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water and sunlight. As a part of the photosynthetic electron transport chain (PETC) of the green algae Chlamydomonas reinhardtii, water is split via Photosystem II (PSII) and the electrons flow through a series of electron transfer cofactors in cytochrome b6f, plastocyanin and Photosystem I (PSI). The terminal electron acceptor of PSI is ferredoxin, from which electrons may be used to reduce NADP+ for metabolic purposes. Concomitant production of a H+ gradient allows production of energy for the cell. Under certain conditions and using the endogenous hydrogenase, excess protons and electrons from ferredoxin may be converted to molecular hydrogen. In this work it is demonstrated both that certain mutations near the quinone electron transfer cofactor in PSI can speed up electron transfer through the PETC, and also that a native [FeFe]-hydrogenase can be expressed in the C. reinhardtii chloroplast. Taken together, these research findings form the foundation for the design of a PSI-hydrogenase fusion for the direct and continuous photo-production of hydrogen in vivo.

Contributors

Agent

Created

Date Created
2013

152086-Thumbnail Image.png

Study of ribosomes having modifications in the peptidyltransferase center using non-alpha-L-amino acids and synthesis and biological evaluation of topopyrones

Description

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome enabled the incorporation of both alpha-D-amino acids and beta-amino acids into full length protein. Described in Chapter 2 are five modified ribosomes having modifications in the peptidyltrasnferase center in the 23S rRNA. These modified ribosomes successfully incorporated five different beta-amino acids (2.1 - 2.5) into E. coli dihydrofolate reductase (DHFR). The second project (Chapter 3) focused on the study of the modified ribosomes facilitating the incorporation of the dipeptide glycylphenylalanine (3.25) and fluorescent dipeptidomimetic 3.26 into DHFR. These ribosomes also had modifications in the peptidyltransferase center in the 23S rRNA of the 50S ribosomal subunit. The modified DHFRs having beta-amino acids 2.3 and 2.5, dipeptide glycylphenylalanine (3.25) and dipeptidomimetic 3.26 were successfully characterized by the MALDI-MS analysis of the peptide fragments produced by "in-gel" trypsin digestion of the modified proteins. The fluorescent spectra of the dipeptidomimetic 3.26 and modified DHFR having fluorescent dipeptidomimetic 3.26 were also measured. The type I and II DNA topoisomerases have been firmly established as effective molecular targets for many antitumor drugs. A "classical" topoisomerase I or II poison acts by misaligning the free hydroxyl group of the sugar moiety of DNA and preventing the reverse transesterfication reaction to religate DNA. There have been only two classes of compounds, saintopin and topopyrones, reported as dual topoisomerase I and II poisons. Chapter 4 describes the synthesis and biological evaluation of topopyrones. Compound 4.10, employed at 20 µM, was as efficient as 0.5 uM camptothecin, a potent topoisomerase I poison, in stabilizing the covalent binary complex (~30%). When compared with a known topoisomerase II poison, etoposide (at 0.5 uM), topopyorone 4.10 produced similar levels of stabilized DNA-enzyme binary complex (~34%) at 5 uM concentration.

Contributors

Agent

Created

Date Created
2013

152375-Thumbnail Image.png

Bleomycin, from start to finish: total synthesis of novel analogues to in vitro fluorescence microscopy imaging

Description

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been shown that bleomycin has the ability to selectively target tumor cells over their non-malignant counterparts. Pyrimidoblamic acid, the N-terminal metal ion binding domain of bleomycin is known to be the moiety that is responsible for O2 activation and the subsequent chemistry leading to DNA strand scission and overall antitumor activity. Chapter 1 describes bleomycin and related DNA targeting antitumor agents as well as the specific structural domains of bleomycin. Various structural analogues of pyrimidoblamic acid were synthesized and subsequently incorporated into their corresponding full deglycoBLM A6 derivatives by utilizing a solid support. Their activity was measured using a pSP64 DNA plasmid relaxation assay and is summarized in Chapter 2. The specifics of bleomycin—DNA interaction and kinetics were studied via surface plasmon resonance and are presented in Chapter 3. By utilizing carefully selected 64-nucleotide DNA hairpins with variable 16-mer regions whose sequences showed strong binding in past selection studies, a kinetic profile was obtained for several BLMs for the first time since bleomycin was discovered in 1966. The disaccharide moiety of bleomycin has been previously shown to be a specific tumor cell targeting element comprised of L-gulose-D-mannose, especially between MCF-7 (breast cancer cells) and MCF-10A ("normal" breast cells). This phenomenon was further investigated via fluorescence microscopy using multiple cancerous cell lines with matched "normal" counterparts and is fully described in Chapter 4.

Contributors

Agent

Created

Date Created
2013

152554-Thumbnail Image.png

Molecular structure and dynamics of spider silk and venom proteins investigated by nuclear magnetic resonance

Description

Spider dragline silk is well known for its outstanding mechanical properties - a combination of strength and extensibility that makes it one of the toughest materials known. Two proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2), comprise dragline silk

Spider dragline silk is well known for its outstanding mechanical properties - a combination of strength and extensibility that makes it one of the toughest materials known. Two proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2), comprise dragline silk fibers. There has been considerable focus placed on understanding the source of spider silk's unique mechanical properties by investigating the protein composition, molecular structure and dynamics. Chemical compositional heterogeneity of spider silk fiber is critical to understand as it provides important information for the interactions between MaSp1 and MaSp2. Here, the amino acid composition of dragline silk protein was precisely determined using a solution-state nuclear magnetic resonance (NMR) approach on hydrolyzed silk fibers. In a similar fashion, solution-state NMR was applied to probe the "13"C/"15"N incorporation in silk, which is essential to understand for designing particular solid-state NMR methods for silk structural characterization. Solid-state NMR was used to elucidate silk protein molecular dynamics and the supercontraction mechanism. A "2"H-"13"C heteronuclear correlation (HETCOR) solid-state NMR technique was developed to extract site-specific "2"H quadrupole patterns and spin-lattice relaxation rates for understanding backbone and side-chain dynamics. Using this technique, molecular dynamics were determined for a number of repetitive motifs in silk proteins - Ala residing nanocrystalline &beta-sheet; domains, 3"1"-helical regions, and, Gly-Pro-Gly-XX &beta-turn; motifs. The protein backbone and side-chain dynamics of silk fibers in both dry and wet states reveal the impact of water on motifs with different secondary structures. Spider venom is comprised of a diverse range of molecules including salts, small organics, acylpolyamines, peptides and proteins. Neurotoxins are an important family of peptides in spider venom and have been shown to target and modulate various ion channels. The neurotoxins are Cys-rich and share an inhibitor Cys knot (ICK) fold. Here, the molecular structure of one G. rosea tarantula neurotoxin, GsAF2, was determined by solution-state NMR. In addition, the interaction between neurotoxins and model lipid bilayers was probed with solid-state NMR and negative-staining (NS) transmission electron microscopy (TEM). It is shown that the neurotoxins influence lipid bilayer assembly and morphology with the formation of nanodiscs, worm-like micelles and small vesicles.

Contributors

Agent

Created

Date Created
2014

154018-Thumbnail Image.png

Developing engineered polymerases for practical applications in synthetic biology

Description

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.

Contributors

Agent

Created

Date Created
2015