Matching Items (30)

Environmental Research Letters Connecting People and Place: A New Framework for Reducing Urban Vulnerability to Extreme Heat

Description

Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme

Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with stakeholders, and an assessment of community vulnerability at a local level. In this letter, we explore the relationships between people and places, in the context of urban heat stress, and present a new research framework for a multi-faceted, top-down and bottom-up analysis of local-level vulnerability to extreme heat. This framework aims to better represent societal vulnerability through the integration of quantitative and qualitative data that go beyond aggregate demographic information. We discuss how different elements of the framework help to focus attention and resources on more targeted health interventions, heat hazard mitigation and climate adaptation strategies.

Contributors

Agent

Created

Date Created
  • 2010-03-26

Designing a Geospatial Information Infrastructure for Mitigation of Heat Wave Hazards in Urban Areas

Description

Extreme heat is a natural hazard that could rapidly increase in magnitude in the 21st century. The combination of increasingurbanization, growing numbers of vulnerable people, and the evidence of global

Extreme heat is a natural hazard that could rapidly increase in magnitude in the 21st century. The combination of increasingurbanization, growing numbers of vulnerable people, and the evidence of global warming indicate an urgent need for improved heat-wavemitigation and response systems. A review of the literature on heat-wave impacts in urban environments and on human health revealsopportunities for improved synthesis, integration, and sharing of information resources that relate to the spatial and temporal nature ofthreats posed by extreme heat. This paper illustrates how geospatial technologies can aid in the mitigation of urban heat waves.

Contributors

Agent

Created

Date Created
  • 2004-07-15

A Framework for Vulnerability Analysis Insustainability Science

Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

Contributors

Created

Date Created
  • 2003-03-07

Mapping Community Determinants of Heat Vulnerability

Description

Background:
The evidence that heat waves can result in both increased deaths and illness is substantial, and concern over this issue is rising because of climate change. Adverse health impacts

Background:
The evidence that heat waves can result in both increased deaths and illness is substantial, and concern over this issue is rising because of climate change. Adverse health impacts from heat waves can be avoided, and epidemiologic studies have identified specific population and community characteristics that mark vulnerability to heat waves.

Objectives:
We situated vulnerability to heat in geographic space and identified potential areas for intervention and further research.

Methods:
We mapped and analyzed 10 vulnerability factors for heat-related morbidity/mortality in the United States: six demographic characteristics and two household air conditioning variables from the U.S. Census Bureau, vegetation cover from satellite images, and diabetes prevalence from a national survey. We performed a factor analysis of these 10 variables and assigned values of increasing vulnerability for the four resulting factors to each of 39,794 census tracts. We added the four factor scores to obtain a cumulative heat vulnerability index value.

Results:
Four factors explained > 75% of the total variance in the original 10 vulnerability variables: a) social/environmental vulnerability (combined education/poverty/race/green space), b) social isolation, c) air conditioning prevalence, and d) proportion elderly/diabetes. We found substantial spatial variability of heat vulnerability nationally, with generally higher vulnerability in the Northeast and Pacific Coast and the lowest in the Southeast. In urban areas, inner cities showed the highest vulnerability to heat.

Conclusions:
These methods provide a template for making local and regional heat vulnerability maps. After validation using health outcome data, interventions can be targeted at the most vulnerable populations.

Contributors

Created

Date Created
  • 2009-11-01

Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona

Description

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data

Objectives: We estimated neighborhood effects of population characteristics and built and natural environments on deaths due to heat exposure in Maricopa County, Arizona (2000–2008).

Methods: We used 2000 U.S. Census data and remotely sensed vegetation and land surface temperature to construct indicators of neighborhood vulnerability and a geographic information system to map vulnerability and residential addresses of persons who died from heat exposure in 2,081 census block groups. Binary logistic regression and spatial analysis were used to associate deaths with neighborhoods.

Results: Neighborhood scores on three factors—socioeconomic vulnerability, elderly/isolation, and unvegetated area—varied widely throughout the study area. The preferred model (based on fit and parsimony) for predicting the odds of one or more deaths from heat exposure within a census block group included the first two factors and surface temperature in residential neighborhoods, holding population size constant. Spatial analysis identified clusters of neighborhoods with the highest heat vulnerability scores. A large proportion of deaths occurred among people, including homeless persons, who lived in the inner cores of the largest cities and along an industrial corridor.

Conclusions: Place-based indicators of vulnerability complement analyses of person-level heat risk factors. Surface temperature might be used in Maricopa County to identify the most heat-vulnerable neighborhoods, but more attention to the socioecological complexities of climate adaptation is needed.

Contributors

Created

Date Created
  • 2013-02-01

Predicting Hospitalization for Heat-Related Illness at the Census-Tract Level: Accuracy of a Generic Heat Vulnerability Index in Phoenix, Arizona (USA)

Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or highincidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

Contributors

Agent

Created

Date Created
  • 2015-06-01

Heat Death Associations With the Built Environment, Social Vulnerability, and Their Interactions With Rising Temperature

Description

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods

In an extreme heat event, people can go to air-conditioned public facilities if residential air-conditioning is not available. Residences that heat slowly may also mitigate health effects, particularly in neighborhoods with social vulnerability. We explored the contributions of social vulnerability and these infrastructures to heat mortality in Maricopa County and whether these relationships are sensitive to temperature. Using Poisson regression modeling with heat-related mortality as the outcome, we assessed the interaction of increasing temperature with social vulnerability, access to publicly available air conditioned space, home air conditioning and the thermal properties of residences. As temperatures increase, mortality from heat-related illness increases less in census tracts with more publicly accessible cooled spaces. Mortality from all internal causes of death did not have this association. Building thermal protection was not associated with mortality. Social vulnerability was still associated with mortality after adjusting for the infrastructure variables. To reduce heat-related mortality, the use of public cooled spaces might be expanded to target the most vulnerable.

Contributors

Created

Date Created
  • 2016-08-03

Vulnerability to Extreme Heat in Metropolitan Phoenix: Spatial, Temporal, and Demographic Dimensions

Description

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure

This study assessed the spatial distribution of vulnerability to extreme heat in 1990 and 2000 within metropolitan Phoenix based on an index of seven equally weighted measures of physical exposure and adaptive capacity. These measures were derived from spatially interpolated climate, normalized differential vegetation index, and U.S. Census data. From resulting vulnerability maps, we also analyzed population groups living in areas of high heat vulnerability. Results revealed that landscapes of heat vulnerability changed substantially in response to variations in physical and socioeconomic factors, with significant alterations to spatial distribution of vulnerability especially between eastern and western sectors of Phoenix. These changes worked to the detriment of Phoenix's Hispanic population and the elderly concentrated in urban-fringe retirement communities.

Contributors

Agent

Created

Date Created
  • 2011-08-18

Micro-Scale Urban Surface Temperatures are Related to Land-Cover Features and Residential Heat Related Health Impacts in Phoenix, AZ USA

Description

Context:
With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems.

Objectives:

Context:
With rapidly expanding urban regions, the effects of land cover changes on urban surface temperatures and the consequences of these changes for human health are becoming progressively larger problems.

Objectives:
We investigated residential parcel and neighborhood scale variations in urban land surface temperature, land cover, and residents’ perceptions of landscapes and heat illnesses in the subtropical desert city of Phoenix, AZ USA.

Methods:
We conducted an airborne imaging campaign that acquired high resolution urban land surface temperature data (7 m/pixel) during the day and night. We performed a geographic overlay of these data with high resolution land cover maps, parcel boundaries, neighborhood boundaries, and a household survey.

Results:
Land cover composition, including percentages of vegetated, building, and road areas, and values for NDVI, and albedo, was correlated with residential parcel surface temperatures and the effects differed between day and night. Vegetation was more effective at cooling hotter neighborhoods. We found consistencies between heat risk factors in neighborhood environments and residents’ perceptions of these factors. Symptoms of heat-related illness were correlated with parcel scale surface temperature patterns during the daytime but no corresponding relationship was observed with nighttime surface temperatures.

Conclusions:
Residents’ experiences of heat vulnerability were related to the daytime land surface thermal environment, which is influenced by micro-scale variation in land cover composition. These results provide a first look at parcel-scale causes and consequences of urban surface temperature variation and provide a critically needed perspective on heat vulnerability assessment studies conducted at much coarser scales.

Contributors

Created

Date Created
  • 2015-10-19

134862-Thumbnail Image.png

Vulnerability: The Reckoning, The Rumble, The Revolution

Description

This paper is a personal exploration of vulnerability in the creative process – how to recognize it, articulate it, and make active decisions despite feeling vulnerable while engaging in

This paper is a personal exploration of vulnerability in the creative process – how to recognize it, articulate it, and make active decisions despite feeling vulnerable while engaging in the creative process. It is structured mirroring Brené Brown’s Rising Strong Process: The Reckoning, The Rumble, and The Revolution. The reckoning is a process of inquiry and discovery that propels me towards growth. It’s becoming mindful so I can recognize patterns and explore why I habitually act/think in particular ways. The rumble, to me, consists of the process anteceding the choice to grow and change after discovering new knowledge from the reckoning instead of ignoring facing these findings because they present fear, shame, and vulnerability. And the revolution is not only what I take away from the reckoning and rumble process but how it affects the way I interact with the world, how I am irrevocably changed as a result of the rising strong experience. My research established three things: First, that the ability to be vulnerable catalyzes growth and deeper connection. Second, that the creative process lends itself to living vulnerably. And third, people are often blinded by vulnerability, resulting in inactive decision making. The paper follows an investigation grounded in this research where I engage in the creative process to build a dance performance piece and journey for both others and myself. Topics such as shame, fear, vulnerability, engagement, active-decision making, and connection are explored. Ultimately, the reckoning illustrated to me that the hardest thing about recognizing my vulnerabilities is discovering my habitual patterns that hide them from me. The rumble taught me various lessons but ultimately showed me engaging with vulnerability is a process that includes a lot of time and challenges. And my revolution solidified my self-worth will only be destroyed if I choose not to live a vulnerable and capricious life.

Contributors

Agent

Created

Date Created
  • 2016-12