Matching Items (3)
Filtering by

Clear all filters

Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
162284-Thumbnail Image.png
Description

Human team members show a remarkable ability to infer the state of their partners and anticipate their needs and actions. Prior research demonstrates that an artificial system can make some predictions accurately concerning artificial agents. This study investigated whether an artificial system could generate a robust Theory of Mind of

Human team members show a remarkable ability to infer the state of their partners and anticipate their needs and actions. Prior research demonstrates that an artificial system can make some predictions accurately concerning artificial agents. This study investigated whether an artificial system could generate a robust Theory of Mind of human teammates. An urban search and rescue (USAR) task environment was developed to elicit human teamwork and evaluate inference and prediction about team members by software agents and humans. The task varied team members’ roles and skills, types of task synchronization and interdependence, task risk and reward, completeness of mission planning, and information asymmetry. The task was implemented in MinecraftTM and applied in a study of 64 teams, each with three remotely distributed members. An evaluation of six Artificial Social Intelligences (ASI) and several human observers addressed the accuracy with which each predicted team performance, inferred experimentally manipulated knowledge of team members, and predicted member actions. All agents performed above chance; humans slightly outperformed ASI agents on some tasks and significantly outperformed ASI agents on others; no one ASI agent reliably outperformed the others; and the accuracy of ASI agents and human observers improved rapidly though modestly during the brief trials.

ContributorsFreeman, Jared T. (Author) / Huang, Lixiao (Author) / Woods, Matt (Author) / Cauffman, Stephen J. (Author)
Created2021-11-04
Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01