Matching Items (4)
Filtering by

Clear all filters

133914-Thumbnail Image.png
Description
This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background

This paper describes the research done to quantify the relationship between external air temperature and energy consumption and internal air temperature and energy consumption. The study was conducted on a LEED Gold certified building, College Avenue Commons, located on Arizona State University's Tempe campus. It includes information on the background of previous studies in the area, some that agree with the research hypotheses and some that take a different path. Real-time data was collected hourly for energy consumption and external air temperature. Intermittent internal air temperature was collected by undergraduate researcher, Charles Banke. Regression analysis was used to prove two research hypotheses. The authors found no correlation between external air temperature and energy consumption, nor did they find a relationship between internal air temperature and energy consumption. This paper also includes recommendations for future work to improve the study.
ContributorsBanke, Charles Michael (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135558-Thumbnail Image.png
Description
This project analyzes the tweets from the 2016 US Presidential Candidates' personal Twitter accounts. The goal is to define distinct patterns and differences between candidates and parties use of social media as a platform. The data spans the period of September 2015 to March 2016, which was during the primary

This project analyzes the tweets from the 2016 US Presidential Candidates' personal Twitter accounts. The goal is to define distinct patterns and differences between candidates and parties use of social media as a platform. The data spans the period of September 2015 to March 2016, which was during the primary races for the Republicans and Democrats. The overall purpose of this project is to contribute to finding new ways of driving value from social media, in particular Twitter.
ContributorsMortimer, Schuyler Kenneth (Author) / Simon, Alan (Thesis director) / Mousavi, Seyedreza (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133499-Thumbnail Image.png
Description
With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of

With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of these services and their relation to poverty, and then by conducting geospatial and regression analysis. The author uses Esri's ArcGIS Pro software to quantify the proximity to public services from urban American neighborhoods (census tracts in the cities of Phoenix and Chicago). Afterwards, the measures indicating proximity are compared to the socioeconomic statuses of neighborhoods using regression analysis. The results indicate that pure proximity to these four services is not necessarily correlated to socioeconomic status. While the paper does uncover some correlations, such as a relationship between school quality and socioeconomic status, the majority of the findings negate the author's hypothesis and show that, in Phoenix and Chicago, there is not much discrepancy between neighborhoods and the extent to which they are able to access vital government-funded services.
ContributorsNorbury, Adam Charles (Author) / Simon, Alan (Thesis director) / Simon, Phil (Committee member) / Department of Information Systems (Contributor) / Department of English (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155683-Thumbnail Image.png
Description
The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems

The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems.

As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2017