Matching Items (6)
Filtering by

Clear all filters

156007-Thumbnail Image.png
Description
Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids (HAA5) and haloacetonitriles (HAN) formation were quantified after treatment with GAC. Low MW NOM was removed preferentially in the early bed volumes, up until exhaustion of available adsorption sites. DBP formation potential lowered with DOC removal. Chlorination prior to GAC is investigated in the second part of this work as a strategy to increase removal of NOM and DBP precursors. Results showed lower TTHM formation in the effluent of the GAC treatment when pre-chlorination was adopted, meaning this strategy could help optimize and extend the bed life if GAC filters. The third part of this work investigates in-situ GAC regeneration as an alternative to recover adsorption capacity of field-spent GAC that could potentially offer new modes of operation for water treatment facilities while savng costs with reactivation of spent GAC in an external facility. Field-spent GACs were treated with different oxidant solutions and recovery in adsorption capacity was evaluated for NOM and for two micro pollutants. Recovery of GAC adsorption capacity was not satisfactory for most of conditions evaluated. This indicates that in-situ GAC regeneration could be more effective when the adsorbates are present at high concentrations. Lastly, this work investigates the impact of low molecular weight polyDADMAC on N-nitrosodimethylamine (NDMA) formation. Water treatment facilities rely on polyDADMAC as a coagulant aid to comply with NOM removal and turbidity requirements. Since polymer-derived NDMA precursors are not removed by GAC, it is essential to optimize the use and synthesis of polyDADMAC to reduce NDMA precursors during water treatment.
ContributorsFischer, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
156654-Thumbnail Image.png
Description
Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the fibers were non-porous. Next, the morphologies of fibers made with carbonaceous materials and the effect of final fiber assembly on adsorption kinetics of a model organic contaminant (phenanthrene, PNT) was investigated. Superfine powdered activated carbon (SPAC), C60 fullerenes, multi-walled carbon nanotubes, and graphene platelets were added to PS and electrospun. SPAC maintained its internal pore structure and created porous fibers which had 30% greater PNT sorption than PS alone and a sevenfold increase in surface area. Carbon-based nanomaterial-PS fibers were thicker but less capacious than neat polystyrene electrospun fibers. The surface areas of the carbonaceous nanomaterial-polystyrene composites decreased compared to neat PS, and PNT adsorption experiments yielded decreased capacity for two out of three carbonaceous nanomaterials. Finally, the morphology and arsenic adsorption capacity of a porous TiO2-PS porous fiber was investigated. Porous fiber was made using polyvinylpyrrolidone (PVP) as a porogen. PVP, PS, and TiO2 were co-spun and the PVP was subsequently eliminated, leaving behind a porous fiber morphology which increased the surface area of the fiber sevenfold and exposed the nanoscale TiO2 enmeshed inside the PS. TiO2-PS fibers had comparable arsenic adsorption performance to non-embedded TiO2 despite containing less TiO2 mass. The use of a sacrificial polymer as a porogen facilitates the creation of a fiber morphology which provides access points between the target pollutant in an aqueous matrix and the sorptive nanomaterials enmeshed inside the fiber while anchoring the nanomaterials, thus preventing release.
ContributorsHoogesteijn von Reitzenstein, Natalia Virginia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Perreault, Francois (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
148174-Thumbnail Image.png
Description

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment

Much of Nepal lacks access to clean drinking water, and many water sources are contaminated with arsenic at concentrations above both World Health Organization and local Nepalese guidelines. While many water treatment technologies exist, it is necessary to identify those that are easily implementable in developing areas. One simple treatment that has gained popularity is biochar—a porous, carbon-based substance produced through pyrolysis of biomass in an oxygen-free environment. Arizona State University’s Engineering Projects in Community Service (EPICS) has partnered with communities in Nepal in an attempt to increase biochar production in the area, as it has several valuable applications including water treatment. Biochar’s arsenic adsorption capability will be investigated in this project with the goal of using the biochar that Nepalese communities produce to remove water contaminants. It has been found in scientific literature that biochar is effective in removing heavy metal contaminants from water with the addition of iron through surface activation. Thus, the specific goal of this research was to compare the arsenic adsorption disparity between raw biochar and iron-impregnated biochar. It was hypothesized that after numerous bed volumes pass through a water treatment column, iron from the source water will accumulate on the surface of raw biochar, mimicking the intentionally iron-impregnated biochar and further increasing contaminant uptake. It is thus an additional goal of this project to compare biochar loaded with iron through an iron-spiked water column and biochar impregnated with iron through surface oxidation. For this investigation, the biochar was crushed and sieved to a size between 90 and 100 micrometers. Two samples were prepared: raw biochar and oxidized biochar. The oxidized biochar was impregnated with iron through surface oxidation with potassium permanganate and iron loading. Then, X-ray fluorescence was used to compare the composition of the oxidized biochar with its raw counterpart, indicating approximately 0.5% iron in the raw and 1% iron in the oxidized biochar. The biochar samples were then added to batches of arsenic-spiked water at iron to arsenic concentration ratios of 20 mg/L:1 mg/L and 50 mg/L:1 mg/L to determine adsorption efficiency. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated an 86% removal of arsenic using a 50:1 ratio of iron to arsenic (1.25 g biochar required in 40 mL solution), and 75% removal with a 20:1 ratio (0.5 g biochar required in 40 mL solution). Additional samples were then inserted into a column process apparatus for further adsorption analysis. Again, ICP-MS analysis was performed and the results showed that while both raw and treated biochars were capable of adsorbing arsenic, they were exhausted after less than 70 bed volumes (234 mL), with raw biochar lasting 60 bed volumes (201 mL) and oxidized about 70 bed volumes (234 mL). Further research should be conducted to investigate more affordable and less laboratory-intensive processes to prepare biochar for water treatment.

ContributorsLaird, Ashlyn (Author) / Schoepf, Jared (Thesis director) / Westerhoff, Paul (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187724-Thumbnail Image.png
Description
Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode

Electrochemical technologies emerge as a feasible solution to monitor and treat pollutants. Although electrochemical technologies have garnered widespread attention, their commercial applications are still constrained by the use of expensive electrocatalysts, and the bulky and rigid plate design of electrodes that restricts electrochemical reactor design to systems with poor electrode surface/ volume treated ratios. By making electrodes flexible, more compact designs that maximize electrode surface per volume treated might become a reality. This dissertation encompasses the successful fabrication of flexible nanocomposite electrodes for electrocatalysis and electroanalysis applications.First, nano boron-doped diamond electrodes (BDD) were prepared as an inexpensive alternative to commercial boron-doped diamond electrodes. Comparative detailed surface and electrochemical characterization was conducted. Empirical study showed that replacing commercial BDD electrodes with nano-BDD electrodes can result in a cost reduction of roughly 1000x while maintaining the same electrochemical performance. Next, self-standing electrodes were fabricated through the electropolymerization of conducing polymer, polypyrrole. Surface characterizations, such as SEM, FTIR and XPS proved the successful fabrication of these self-standing electrodes. High mechanical stability and bending flexibility demonstrated the ability to use these electrodes in different designs, such as roll-to-roll membranes. Electrochemical nitrite reduction was employed to demonstrate the viability of using self-standing nanocomposite electrodes for electrocatalytic applications reducing hazardous nitrogen oxyanions (i.e., nitrite) towards innocuous species such as nitrogen gas. A high faradaic efficiency of 78% was achieved, with high selectivity of 91% towards nitrogen gas. To further enhance the conductivity and charge transfer properties of self-standing polypyrrole electrodes, three different nanoparticles, including copper (Cu), gold (Au), and platinum (Pt), were incorporated in the polypyrrole matrix. Effect of nanoparticle wt% and interaction between metal nanoparticles and polypyrrole matrix was investigated for electroanalytical applications, specifically dopamine sensing. Flexible nanocomposite electrodes showed outstanding performance as electrochemical sensors with PPy-Cu 120s exhibiting a low limit of detection (LOD) of 1.19 µM and PPy-Au 120s exhibiting a high linear range of 5 µM - 300 µM. This dissertation outlines a method of fabricating self-standing electrodes and provides a pathway of using self-standing electrodes based on polypyrrole and polypyrrole-metal nanocomposites for various applications in wastewater treatment and electroanalytical sensing.
ContributorsBansal, Rishabh (Author) / Garcia-Segura, Sergio (Thesis advisor) / Westerhoff, Paul (Committee member) / Perreault, Francois (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2023
158255-Thumbnail Image.png
Description
Engineered nanomaterials (ENMs) are added to numerous consumer products to enhance their effectiveness, whether it be for environmental remediation, mechanical properties, or as dietary supplements. Uses of ENMs include adding to enhance products, carbon for strength or dielectric properties, silver for antimicrobial properties, zinc oxide for UV sun-blocking properties, titanium

Engineered nanomaterials (ENMs) are added to numerous consumer products to enhance their effectiveness, whether it be for environmental remediation, mechanical properties, or as dietary supplements. Uses of ENMs include adding to enhance products, carbon for strength or dielectric properties, silver for antimicrobial properties, zinc oxide for UV sun-blocking properties, titanium dioxide for photocatalysis, or silica for desiccant properties. However, concerns arise from ENM functional properties that can impact the environment and a lack of regulation regarding ENMs leads to potential public exposure to ENMs and results in ill-informed public or manufacturer perceptions of ENMs. My dissertation evaluates the environmental, human health, and societal impacts of using ENMs, with a focus on ionic silver and nanosilver, in consumer and industrial products. Reproducible experiments served as functional assays to assess ENM distributions among various environmental matrices. Functional assay results were visualized using radar plots and aid in a framework to estimate likely ENM disposition in the environment. To assess beneficial uses of ENMs, bromide ion removal from drinking waters to limit disinfection by-product formation was studied. Silver-enabled graphene oxide materials were capable of removing bromide from water, and exhibited less competition from background solutes (e.g. natural organic matter) when compared against solely ionic silver addition to water for bromide removal. To assess complex interactions of ENMs with the microbiome, batch experiments were performed using fecal samples spiked with ionic silver or commercial dietary silver nanoparticles. Dietary nanosilver and ionic silver exposures to the fecal microbiome for 24 hours reduce short chain fatty acid (SCFA) production and changes the relative abundance of the microbiota. To understand the social perceptions of ENMS, statistically rigorous surveys were conducted to assess related perceptions related to the use of ENMs in drinking water treatment devices the general public and, separately, industrial manufacturers. These stakeholders are influenced by costs and efficiency of the technologies, consumer concerns of the safety of technologies, and environmental health and safety of the technologies. This dissertation represents novel research that took an interdisciplinary approach, spanning from wet-lab engineering bench scale testing to social science survey assessments to better understand the environmental, human health, and societal impacts of using ENMs such as nanosilver and ionic silver in industrial processes and consumer products.
ContributorsKidd, Justin (Author) / Westerhoff, Paul (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Perreault, Francois (Committee member) / Maynard, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
161322-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS in drinking and wastewaters. Among impacted users of PFAS, the semiconductor industry is in urgent need of technologies to remove PFAS from water. Specifically, they prefer technologies capable of mineralizing PFAS into inorganic fluoride (F-). The goal of this thesis is to compare the effectiveness of photo- versus electrocatalytic treatment in benchtop reactor systems PFAS in industrial wastewater before selecting one technology to investigate comprehensively. First, a model wastewater was developed based upon semiconductor samples to represent water matrices near where PFAS are used and the aggregate Fab effluent, which were then used in batch catalytic experiments. Second, batch experiments with homogenous photocatalysis (UV/SO32-) were found to be more energy-intensive than heterogeneous catalysis using boron-doped diamond (BDD) electrodes, and the latter approach was then studied in-depth. During electrocatalysis, longer chain PFAS (C8; PFOA & PFOS) were observed to degrade faster than C6 and C4 PFAS. This study is the first to report near-complete defluorination of not only C8- and C6- PFAS, but also C4-PFAS, in model wastewaters using BDD electrocatalysis, and the first to report such degradation in real Fab wastewater effluents. Based upon differences in PFAS degradation rates observed in single-solute systems containing only C4 PFAS versus multi-solute systems including C4, C6, and C8 PFAS, it was concluded that the surfactant properties of the longer-chain PFAS created surface films on the BDD electrode surface which synergistically enhanced removal of shorter-chain PFAS. The results from batch experiments that serve as the basis of this thesis will be used to assess the chemical byproducts and their associated bioaccumulation and toxicity. This thesis was aimed at developing an efficient method for the degradation of perfluoroalkyl substances from industrial process waters at realistic concentrations.
ContributorsNienhauser, Alec Brockway (Author) / Westerhoff, Paul (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Thomas, Marylaura (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2021