Matching Items (7)
Filtering by

Clear all filters

154132-Thumbnail Image.png
Description
The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.
ContributorsLinks, Alexander Glenn (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2015
156007-Thumbnail Image.png
Description
Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids (HAA5) and haloacetonitriles (HAN) formation were quantified after treatment with GAC. Low MW NOM was removed preferentially in the early bed volumes, up until exhaustion of available adsorption sites. DBP formation potential lowered with DOC removal. Chlorination prior to GAC is investigated in the second part of this work as a strategy to increase removal of NOM and DBP precursors. Results showed lower TTHM formation in the effluent of the GAC treatment when pre-chlorination was adopted, meaning this strategy could help optimize and extend the bed life if GAC filters. The third part of this work investigates in-situ GAC regeneration as an alternative to recover adsorption capacity of field-spent GAC that could potentially offer new modes of operation for water treatment facilities while savng costs with reactivation of spent GAC in an external facility. Field-spent GACs were treated with different oxidant solutions and recovery in adsorption capacity was evaluated for NOM and for two micro pollutants. Recovery of GAC adsorption capacity was not satisfactory for most of conditions evaluated. This indicates that in-situ GAC regeneration could be more effective when the adsorbates are present at high concentrations. Lastly, this work investigates the impact of low molecular weight polyDADMAC on N-nitrosodimethylamine (NDMA) formation. Water treatment facilities rely on polyDADMAC as a coagulant aid to comply with NOM removal and turbidity requirements. Since polymer-derived NDMA precursors are not removed by GAC, it is essential to optimize the use and synthesis of polyDADMAC to reduce NDMA precursors during water treatment.
ContributorsFischer, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134194-Thumbnail Image.png
Description
This report analyzes the potential for accumulation of boron in direct potable reuse. Direct potable reuse treats water through desalination processes such as reverse osmosis or nanofiltration which can achieve rejection rates of salts sometimes above 90%. However, boron achieves much lower rejection rates near 40%. Because of this low

This report analyzes the potential for accumulation of boron in direct potable reuse. Direct potable reuse treats water through desalination processes such as reverse osmosis or nanofiltration which can achieve rejection rates of salts sometimes above 90%. However, boron achieves much lower rejection rates near 40%. Because of this low rejection rate, there is potential for boron to accumulate in the system to levels that are not recommended for potable human consumption of water. To analyze this issue a code was created that runs a steady state system that tracks the internal concentration, permeate concentration, wastewater concentration and reject concentration at various rejection rates, as well as all the flows. A series of flow and mass balances were performed through five different control volumes that denoted different stages in the water use. First was mixing of clean water with permeate; second, consumptive uses; third, addition of contaminant; fourth, wastewater treatment; fifth, advanced water treatments. The system cycled through each of these a number of times until steady state was reached. Utilities or cities considering employing direct potable reuse could utilize this model by estimating their consumption levels and input of contamination, and then seeing what percent rejection or inflow of makeup water they would need to obtain to keep boron levels at a low enough concentration to be fit for consumption. This code also provides options for analyzing spikes and recovery in the system due to spills, and evaporative uses such as cooling towers and their impact on the system.
ContributorsDoidge, Sydney (Author) / Fox, Peter (Thesis director) / Perreault, Francois (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
136729-Thumbnail Image.png
Description
The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US.

The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US. Reclaimed water is a possible solution. It's used for a variety of non-potable, or non-drinkable, reasons. These uses include: cooling power plants, concrete mixing, artificial lakes, and irrigation for public parks and golf courts. Cooling power plants utilizes roughly 41% of the total water consumed by the United States, which makes it the highest user of water in the US. The attention is turned to optimizing mechanical processes and reducing the amount of water consumed. Wet-recirculating systems reuse cooling water in a second cycle rather than discharging it immediately. Cooling towers are commonly used to expose water to ambient air. As the water evaporates, more water is withdrawn while the rest continues to circulate. These systems have much lower water withdrawals than once-through systems, but have higher water consumption. The cooling towers in wet-recirculating plants and other warm machinery have two major limitations: evaporation of pumped water and scale formation in the components. Cooling towers circulate water, and only draw as it evaporates, which conserves water. The scale formation in the components is due to the hardness of the water. Scale occurs when hard water evaporates and forms solid calcium carbonate. This formation can lead to reduced flow or even clogging in pipes, fouling of components or pipes, and reduced cooling efficiency. Another concern from the public over the use of reclaimed water is the possibility of there being fecal contamination. This fear stems from the stigma associated with drinking water that essentially came from the toilet. An emerging technology, in order to address these three issues, is the use of an electromagnetic device. The wires have a current flowing through which induces a magnetic field perpendicular to the direction of the flow, while the electrical field is proportional to the flow velocity. In other words, the magnetic and electrical fields will create an effect that will concentrate cations at the center of the pipe and anions at the wall of the pipe or the other way depending on the direction of the flow. Reversing the field will then cause the cations and anions to move toward one another and increase the collision frequency and energy. The purpose of these experiments is to test the effects of the electromagnetic device on the aforementioned topics. There are three tests that were performed, a surface tension test, a hardness test, and a microbial test. The surface tension test focused on the angle of a water droplet until it burst. The angle would theoretically decrease as the bond between water molecules increased due to the device. The results of this test shows a lower angle for the treated water but a higher angle for the untreated one. This means the device had an effect on the surface tension of the water. Hard water is caused by calcium and magnesium ions in the water. These ions are dissolved in the water as it travels past soil and rocks. The purpose of this test is to measure the free calcium ion amount in the water. If the free calcium number lowers, then it can be assumed it collided with the carbonate and formed calcium carbonate. This calcium carbonate causes a reduction in hardness in the water. The result of the test showed no correlation between ion concentrations in the treated/untreated system. The e. coli test focused on testing the effects of an electromagnetic device on inhibiting fecal contamination in water/wastewater at a treatment facility. In order to detect fecal contamination, we test for bacteria known as fecal coliforms, more specifically e. coli. The test involved spiking the system with bacteria and testing its concentrations after time had passed.The e. coli results showed no trend in the inactivation of the bacteria. In conclusion, the device had varying results, but multiple steps can be taken in the future in order to continue research.
ContributorsHernandez, Andres Victor (Author) / Fox, Peter (Thesis director) / Abbaszadegan, Morteza (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
133603-Thumbnail Image.png
Description
The purpose of this experiment was to determine how effective electromagnetic waves could be at reducing calcium hardness in a body of water as well as see how the makeup of the water (free calcium levels, total calcium levels, pH, alkalinity, and surface tension) were affected over the span of

The purpose of this experiment was to determine how effective electromagnetic waves could be at reducing calcium hardness in a body of water as well as see how the makeup of the water (free calcium levels, total calcium levels, pH, alkalinity, and surface tension) were affected over the span of testing. A vary of four different nominal calcium hardness levels, ranging from 80 mg/L \u2014 240 mg/L of calcium in terms of calcium hardness were tested over a span of thirty minutes with samples being taking once every ten minutes. Data collection indicates that there is a noticeable decrease in free calcium, total calcium, and pH over a span of thirty minutes using the electromagnetic device, however, no noticeable trend can be made for the alkalinity and surface tension. Errors can be stated to be caused by lack of protocol for calcium hardness creation as well as needed updates for procedures such as alkalinity and surface tension testing. It can be deduced that the process is favorable, but it cannot be concluded as to whether to not this device can become a sustainable alternative to salt-based water softeners.
ContributorsNnorom, Njideka Cynthia (Author) / Fox, Peter (Thesis director) / Atkinson, Ariel (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable

The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable linker connects oligonucleotides to fluorophores to show nucleic acids through in situ hybridization. Post-imaging, the fluorophores are effectively cleaved off in half an hour without loss of RNA or DNA integrity. Through multiple cycles of hybridization, imaging, and cleavage this approach proves to quantify thousands of different RNA species or genomic loci because of single-molecule sensitivity in single cells in situ. Different nucleic acids can be imaged by shown by multi-color staining in each hybridization cycle, and that multiple hybridization cycles can be run on the same specimen. It is shown that in situ analysis of DNA, RNA and protein can be accomplished using both cleavable fluorescent antibodies and oligonucleotides. The highly multiplexed imaging platforms will have the potential for wide applications in both systems biology and biomedical research. Thus, proving to be cost effective and time effective.
ContributorsSamuel, Adam David (Author) / Guo, Jia (Thesis director) / Liu, Wei (Committee member) / Wang, Xu (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05