Matching Items (6)
Filtering by

Clear all filters

150139-Thumbnail Image.png
Description
Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of

Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of content. Tags can either be assigned by an algorithm, the author, or the community. These tags can also be organized into tag clouds, which are visual representations of the structure and organization contained implicitly within these tags. Importantly, little is known on how we use these different tagging structures to understand the content and structure of a given site. This project examines 2 different characteristics of tagging structures: font size and spatial orientation. In order to examine how these different characteristics might interact with individual differences in attentional control, a measure of working memory capacity (WMC) was included. The results showed that spatial relationships affect how well users understand the structure of a website. WMC was not shown to have any significant effect; neither was varying the font size. These results should better inform how tags and tag clouds are used on the Web, and also provide an estimation of what properties to include when designing and implementing a tag cloud on a website.
ContributorsBanas, Steven (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russell (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150067-Thumbnail Image.png
Description
The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems:

The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems: 1) lack of visibility (parts and tools were difficult to identify), 2) high memory demands, and 3) insufficient user feedback. In an effort to improve completion rate and eliminate error, cognitive aids were designed utilizing human factors principles that would replace existing manufacturer visual aids. Then, a usability test was conducted, which compared the endoscope reprocessing performance of novices using the standard manufacturer-provided visual aids and the new cognitive aids. Participants successfully completed 87.1% of the reprocessing procedure in the experimental condition with the use of the cognitive aids, compared to 46.3% in the control condition using only existing support materials. Twenty-five of sixty subtasks showed significant improvement in completion rates. When given a cognitive aid designed with human factors principles, participants were able to more successfully complete the reprocessing task. This resulted in an endoscope that was more likely to be safe for patient use.
ContributorsJolly, Jonathan D (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
153937-Thumbnail Image.png
Description
The International Standards Organization (ISO) documentation utilizes Fitts’ law to determine the usability of traditional input devices like mouse and touchscreens for one- or two-dimensional operations. To test the hypothesis that Fitts’ Law can be applied to hand/air gesture based computing inputs, Fitts’ multi-directional target acquisition task is applied to

The International Standards Organization (ISO) documentation utilizes Fitts’ law to determine the usability of traditional input devices like mouse and touchscreens for one- or two-dimensional operations. To test the hypothesis that Fitts’ Law can be applied to hand/air gesture based computing inputs, Fitts’ multi-directional target acquisition task is applied to three gesture based input devices that utilize different technologies and two baseline devices, mouse and touchscreen. Three target distances and three target sizes were tested six times in a randomized order with a randomized order of the five input technologies. A total of 81 participants’ data were collected for the within subjects design study. Participants were instructed to perform the task as quickly and accurately as possible according to traditional Fitts’ testing procedures. Movement time, error rate, and throughput for each input technology were calculated.

Additionally, no standards exist for equating user experience with Fitts’ measures such as movement time, throughput, and error count. To test the hypothesis that a user’s experience can be predicted using Fitts’ measures of movement time, throughput and error count, an ease of use rating using a 5-point scale for each input type was collected from each participant. The calculated Mean Opinion Scores (MOS) were regressed on Fitts’ measures of movement time, throughput, and error count to understand the extent to which they can predict a user’s subjective rating.
ContributorsBurno, Rachael A (Author) / Wu, Bing (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2015
157253-Thumbnail Image.png
Description
Reading partners’ actions correctly is essential for successful coordination, but interpretation does not always reflect reality. Attribution biases, such as self-serving and correspondence biases, lead people to misinterpret their partners’ actions and falsely assign blame after an unexpected event. These biases thus further influence people’s trust in their partners, including

Reading partners’ actions correctly is essential for successful coordination, but interpretation does not always reflect reality. Attribution biases, such as self-serving and correspondence biases, lead people to misinterpret their partners’ actions and falsely assign blame after an unexpected event. These biases thus further influence people’s trust in their partners, including machine partners. The increasing capabilities and complexity of machines allow them to work physically with humans. However, their improvements may interfere with the accuracy for people to calibrate trust in machines and their capabilities, which requires an understanding of attribution biases’ effect on human-machine coordination. Specifically, the current thesis explores how the development of trust in a partner is influenced by attribution biases and people’s assignment of blame for a negative outcome. This study can also suggest how a machine partner should be designed to react to environmental disturbances and report the appropriate level of information about external conditions.
ContributorsHsiung, Chi-Ping (M.S.) (Author) / Chiou, Erin (Thesis advisor) / Cooke, Nancy J. (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
155568-Thumbnail Image.png
Description
This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical Methods (NDMs) were applied to capture characteristics of overall team coordination and communication behaviors. The findings supported the hypothesis that coordination stability is related to team performance in a nonlinear manner with optimal performance associated with moderate stability coupled with flexibility. Thus, we need to build mechanisms in HATs to demonstrate moderately stable and flexible coordination behavior to achieve team-level goals under routine and novel task conditions.
ContributorsDemir, Mustafa, Ph.D (Author) / Cooke, Nancy J. (Thesis advisor) / Bekki, Jennifer (Committee member) / Amazeen, Polemnia G (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017
157988-Thumbnail Image.png
Description
The current study aims to explore factors affecting trust in human-drone collaboration. A current gap exists in research surrounding civilian drone use and the role of trust in human-drone interaction and collaboration. Specifically, existing research lacks an explanation of the relationship between drone pilot experience, trust, and trust-related behaviors as

The current study aims to explore factors affecting trust in human-drone collaboration. A current gap exists in research surrounding civilian drone use and the role of trust in human-drone interaction and collaboration. Specifically, existing research lacks an explanation of the relationship between drone pilot experience, trust, and trust-related behaviors as well as other factors. Using two dimensions of trust in human-automation team—purpose and performance—the effects of experience on drone design and trust is studied to explore factors that may contribute to such a model. An online survey was conducted to examine civilian drone operators’ experience, familiarity, expertise, and trust in commercially available drones. It was predicted that factors of prior experience (familiarity, self-reported expertise) would have a significant effect on trust in drones. The choice to use or exclude the drone propellers in a search-and-identify scenario, paired with the pilots’ experience with drones, would further confirm the relevance of the trust dimensions of purpose versus performance in the human-drone relationship. If the pilot has a positive sense of purpose and benevolence with the drone, the pilot trusts the drone has a positive intent towards them and the task. If the pilot has trust in the performance of the drone, they ascertain that the drone has the skill to do the task. The researcher found no significant differences between mean trust scores across levels of familiarity, but did find some interaction between self-report expertise, familiarity, and trust. Future research should further explore more concrete measures of situational participant factors such as self-confidence and expertise to understand their role in civilian pilots’ trust in their drone.
ContributorsNiichel, Madeline Kathleen (Author) / Chiou, Erin (Thesis advisor) / Cooke, Nancy J. (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2019