Matching Items (8)

152593-Thumbnail Image.png

Sharing is caring: a data exchange framework for colocated mobile apps

Description

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to achieve synergistic benefits. To enable integration between apps, manual communication between developers is needed, which can be problematic on many levels. In order to promote app integration, a systematic approach towards data sharing between multiple apps is essential. However, current approaches to app integration require large code modifications to reap the benefits of shared data such as requiring developers to provide APIs or use large, invasive middlewares. In this thesis, a data sharing framework was developed providing a non-invasive interface between mobile apps for data sharing and integration. A separate app acts as a registry to allow apps to register database tables to be shared and query this information. Two health monitoring apps were developed to evaluate the sharing framework and different methods of data integration between apps to promote synergistic feedback. The health monitoring apps have shown non-invasive solutions can provide data sharing functionality without large code modifications and manual communication between developers.

Contributors

Agent

Created

Date Created
  • 2014

155174-Thumbnail Image.png

Monitoring physiological signals using camera

Description

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.

Contributors

Agent

Created

Date Created
  • 2016

154187-Thumbnail Image.png

Evidence-based development of trustworthy mobile medical apps

Description

Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery. These apps often control human

Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery. These apps often control human physiology and work on sensitive data. Thus it is necessary to have evidences of their trustworthiness i.e. maintaining privacy of health data, long term operation of wearable sensors and ensuring no harm to the user before actual marketing. Traditionally, clinical studies are used to validate the trustworthiness of medical systems. However, they can take long time and could potentially harm the user. Such evidences can be generated using simulations and mathematical analysis. These methods involve estimating the MMA interactions with human physiology. However, the nonlinear nature of human physiology makes the estimation challenging.

This research analyzes and develops MMA software while considering its interactions with human physiology to assure trustworthiness. A novel app development methodology is used to objectively evaluate trustworthiness of a MMA by generating evidences using automatic techniques. It involves developing the Health-Dev β tool to generate a) evidences of trustworthiness of MMAs and b) requirements assured code generation for vulnerable components of the MMA without hindering the app development process. In this method, all requests from MMAs pass through a trustworthy entity, Trustworthy Data Manager which checks if the app request satisfies the MMA requirements. This method is intended to expedite the design to marketing process of MMAs. The objectives of this research is to develop models, tools and theory for evidence generation and can be divided into the following themes:

• Sustainable design configuration estimation of MMAs: Developing an optimization framework which can generate sustainable and safe sensor configuration while considering interactions of the MMA with the environment.

• Evidence generation using simulation and formal methods: Developing models and tools to verify safety properties of the MMA design to ensure no harm to the human physiology.

• Automatic code generation for MMAs: Investigating methods for automatically

• Performance analysis of trustworthy data manager: Evaluating response time generating trustworthy software for vulnerable components of a MMA and evidences.performance of trustworthy data manager under interactions from non-MMA smartphone apps.

Contributors

Agent

Created

Date Created
  • 2015

155973-Thumbnail Image.png

Diabetes management system for a new type 2 diabetes geriatric cohort: improve the interaction of self-management

Description

According to the ADA (American Diabetes Association), diabetes mellitus is one of the chronic diseases with the highest mortality rate. In the US, 25 million are known diabetics, which may

According to the ADA (American Diabetes Association), diabetes mellitus is one of the chronic diseases with the highest mortality rate. In the US, 25 million are known diabetics, which may double in the next decade, and another seven million are undiagnosed. Among these patients, older adults are a very special group with varying physical capabilities, cognitive functions and life expectancies. Because they run an increased risk for geriatric conditions, Type 2 diabetes treatments for them must be both realistic and systematic. In fact, some researchers have explored older adults’ experiences of diabetes, and how they manage their diabetes with new technological devices. However, little research has focused on their emotional experiences of medical treatment technology, such as mobile applications, tablets, and websites for geriatric diabetes. This study will address both elderly people's experiences and reactions to devices and their children's awareness of diabetes. It aims to find out how to improve the diabetes treatment and create a systematic diabetes mobile application that combines self-initiated and assisted care together.

Contributors

Agent

Created

Date Created
  • 2017

152367-Thumbnail Image.png

Designing m-health modules with sensor interfaces for DSP education

Description

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.

Contributors

Agent

Created

Date Created
  • 2013

150596-Thumbnail Image.png

Adaptive biofeedback with signal processing and biosensors in mobile health

Description

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This work involves development of an innovative mobile health system with adaptive biofeedback mechanism and demonstrates the importance of biofeedback in accurate measurements of physiological parameters to facilitate the diagnosis in mobile health systems. Resting Metabolic Rate (RMR) assessment, a key aspect in the treatment of diet related health problems is considered as a model to demonstrate the importance of adaptive biofeedback in mobile health. A breathing biofeedback mechanism has been implemented with digital signal processing techniques for real-time visual and musical guidance to accurately measure the RMR. The effects of adaptive biofeedback with musical and visual guidance were assessed on 22 healthy subjects (12 men, 10 women). Eight RMR measurements were taken for each subject on different days under same conditions. It was observed the subjects unconsciously followed breathing biofeedback, yielding consistent and accurate measurements for the diagnosis. The coefficient of variation of the measured metabolic parameters decreased significantly (p < 0.05) for 20 subjects out of 22 subjects.

Contributors

Agent

Created

Date Created
  • 2012

157565-Thumbnail Image.png

Adaptive mHealth interventions for improving youth responsiveness and clinical outcomes

Description

Mobile health (mHealth) applications (apps) hold tremendous potential for addressing chronic health conditions. Smartphones are now the most popular form of computing, and the ubiquitous “always with us, always on”

Mobile health (mHealth) applications (apps) hold tremendous potential for addressing chronic health conditions. Smartphones are now the most popular form of computing, and the ubiquitous “always with us, always on” nature of mobile technology makes them amenable to interventions aimed and managing chronic disease. Several challenges exist, however, such as the difficulty in determining mHealth effects due to the rapidly changing nature of the technology and the challenges presented to existing methods of evaluation, and the ability to ensure end users consistently use the technology in order to achieve the desired effects. The latter challenge is in adherence, defined as the extent to which a patient conducts the activities defined in a clinical protocol (i.e. an intervention plan). Further, higher levels of adherence should lead to greater effects of the intervention (the greater fidelity to the protocol, the more benefit one should receive from the protocol). mHealth has limitations in these areas; the ability to have patients sustainably adhere to a protocol, and the ability to drive intervention effect sizes. My research considers personalized interventions, a new approach of study in the mHealth community, as a potential remedy to these limitations. Specifically, in the context of a pediatric preventative anxiety protocol, I introduce algorithms to drive greater levels of adherence and greater effect sizes by incorporating per-patient (personalized) information. These algorithms have been implemented within an existing mHealth app for middle school that has been successfully deployed in a school in the Phoenix Arizona metropolitan area. The number of users is small (n=3) so a case-by-case analysis of app usage is presented. In addition simulated user behaviors based on models of adherence and effects sizes over time are presented as a means to demonstrate the potential impact of personalized deployments on a larger scale.

Contributors

Agent

Created

Date Created
  • 2019

154796-Thumbnail Image.png

Assessing the impact of usability design features of an mHealth app on clinical protocol compliance using a mixed methods approach

Description

In the last decade, the number of people who own a mobile phone or portable electronic communication device has grown exponentially. Recent advances in smartphone technology have enabled mobile devices

In the last decade, the number of people who own a mobile phone or portable electronic communication device has grown exponentially. Recent advances in smartphone technology have enabled mobile devices to provide applications (“mHealth apps”) to support delivering interventions, tracking health treatments, or involving a healthcare team into the treatment process and symptom monitoring. Although the popularity of mHealth apps is increasing, few lessons have been shared regarding user experience design and evaluation for such innovations as they relate to clinical outcomes. Studies assessing usability for mobile apps primarily rely on survey instruments. Though surveys are effective in determining user perception of usability and positive attitudes towards an app, they do not directly assess app feature usage, and whether feature usage and related aspects of app design are indicative of whether intended tasks are completed by users. This is significant in the area of mHealth apps, as proper utilization of the app determines compliance to a clinical study protocol. Therefore it is important to understand how design directly impacts compliance, specifically what design factors are prevalent in non-compliant users. This research studies the impact of usability features on clinical protocol compliance by applying a mixed methods approach to usability assessment, combining traditional surveys, log analysis, and clickstream analysis to determine the connection of design to outcomes. This research is novel in its construction of the mixed methods approach and in its attempt to tie usability results to impacts on clinical protocol compliance. The validation is a case study approach, applying the methods to an mHealth app developed for early prevention of anxiety in middle school students. The results of three empirical studies are shared that support the construction of the mixed methods approach.

Contributors

Agent

Created

Date Created
  • 2016