Matching Items (4)

Filtering by

Clear all filters

132715-Thumbnail Image.png

Investigation and Analysis of Music Genre Identification via Machine Learning

Description

Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music

Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music genre recognition using the Free Music Archive (FMA) dataset. We compare the classification accuracy of popular machine learning models, implement various tuning techniques including principal components analysis (PCA), as well as provide an analysis of the effect of feature space noise on classification accuracy.

Contributors

Agent

Created

Date Created
2019-05

Electronic Music Composition and Production

Description

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the

This creative project thesis involves electronic music composition and production, and it uses some elements of algorithmic music composition (through recurrent neural networks). Algorithmic composition techniques are used here as a tool in composing the pieces, but are not the main focus. Thematically, this project explores the analogy between artificial neural networks and neural activity in the brain. This project consists of three short pieces, each exploring these concept in different ways.

Contributors

Agent

Created

Date Created
2016-05

147972-Thumbnail Image.png

Audio Waveform Sample SVD Compression and Impact on Performance

Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

Contributors

Agent

Created

Date Created
2021-05

147587-Thumbnail Image.png

Data Representation for Predicting Harmonic Clusters with LSTM

Description

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz standards. A total of 200 unique datasets were produced and tested, resulting in the prediction of nearly 51 million chords. A note-prediction accuracy of 82.1% and a chord-prediction accuracy of 34.5% were achieved across all datasets. Methods of data representation that were rooted in valid music theory frameworks were found to increase the efficacy of harmonic prediction by up to 6%. Optimal LSTM input sizes were also determined for each method of data representation.

Contributors

Agent

Created

Date Created
2021-05