Matching Items (2)
Filtering by

Clear all filters

147587-Thumbnail Image.png
Description

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz standards. A total of 200 unique datasets were produced and tested, resulting in the prediction of nearly 51 million chords. A note-prediction accuracy of 82.1% and a chord-prediction accuracy of 34.5% were achieved across all datasets. Methods of data representation that were rooted in valid music theory frameworks were found to increase the efficacy of harmonic prediction by up to 6%. Optimal LSTM input sizes were also determined for each method of data representation.

ContributorsRangaswami, Sriram Madhav (Author) / Lalitha, Sankar (Thesis director) / Jayasuriya, Suren (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132715-Thumbnail Image.png
Description
Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music genre recognition using the Free Music Archive (FMA) dataset. We

Modern audio datasets and machine learning software tools have given researchers a deep understanding into Music Information Retrieval (MIR) applications. In this paper, we investigate the accuracy and viability of using a machine learning based approach to perform music genre recognition using the Free Music Archive (FMA) dataset. We compare the classification accuracy of popular machine learning models, implement various tuning techniques including principal components analysis (PCA), as well as provide an analysis of the effect of feature space noise on classification accuracy.
ContributorsKhondoker, Farib (Co-author) / Wildenstein, Diego (Co-author) / Spanias, Andreas (Thesis director) / Ingalls, Todd (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05