Matching Items (2)
Filtering by

Clear all filters

131260-Thumbnail Image.png
Description
Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine learning applications expand to numerous fields; however, I chose to focus on machine learning with a business perspective for this thesis, specifically e-commerce.

The e-commerce market utilizes information to target customers and drive business. More and more online services have become available, allowing consumers to make purchases and interact with an online system. For example, Amazon is one of the largest Internet-based retail companies. As people shop through this website, Amazon gathers huge amounts of data on its customers from personal information to shopping history to viewing history. After purchasing a product, the customer may leave reviews and give a rating based on their experience. Performing analytics on all of this data can provide insights into making more informed business and marketing decisions that can lead to business growth and also improve the customer experience.
For this thesis, I have trained binary classification models on a publicly available product review dataset from Amazon to predict whether a review has a positive or negative sentiment. The sentiment analysis process includes analyzing and encoding the human language, then extracting the sentiment from the resulting values. In the business world, sentiment analysis provides value by revealing insights into customer opinions and their behaviors. In this thesis, I will explain how to perform a sentiment analysis and analyze several different machine learning models. The algorithms for which I compared the results are KNN, Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Linear Support Vector Machines, and Support Vector Machines with an RBF kernel.
ContributorsMadaan, Shreya (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131477-Thumbnail Image.png
Description
The goal of this product was to create a highly customizable application in which any individual, musician or not, can create a harmony for the user’s melody. This Automating Music Composer is built on the underlying rules of music composition, rules that are unique for each type of music available.

The goal of this product was to create a highly customizable application in which any individual, musician or not, can create a harmony for the user’s melody. This Automating Music Composer is built on the underlying rules of music composition, rules that are unique for each type of music available. This program is built on rules that are similar to how a Finite State Machine works (Fig 1). Each state represents a different chord in a given key, where the first roman numeral represents the first note in the chord progression. Each transition represents the action that can be taken by the chord progression, or the next note that can be reached by the current note. The user is able to manipulate these rules and styles, adjust different musical parameters to their liking, and is able to input their own melody, which then will output a unique harmony. This product aims to bridge the gap between predictive technologies and musical composition. Allowing the user to be more involved in the composition process helps the program to act as a tool for the user, rather than a separate entity that simply gives the user a completed recording. This allows the user to appreciate and understand what they are helping to produce more than they would if they were to simply be an inactive consumer of a random music composer. This product is meant to feel like an extension of the user, rather than a separate tool.
ContributorsKumar, Dhantin (Co-author) / Lopez, Christian (Co-author) / Nakamura, Mutsumi (Thesis director) / Blount, Andrew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05