Matching Items (5)
Filtering by

Clear all filters

171931-Thumbnail Image.png
Description
While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies

While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies in the practices currently in place limits the ability to develop more precise oncological treatment and prognosis. This study aimed to identify biomarkers, with potential to more accurately diagnose how far cancer has advanced within a patient and determine prognosis. It is the hope that pathways provided by this study form the basis for future research into more standardized practices and potential treatment based on specific affected biological processes. The PathOlogist tool was utilized to calculate activity metrics for 1,324 biological pathways in 374 The Cancer Genome Atlas (TCGA) hepatocellular carcinoma donors. Further statistical analysis was done on two datasets, formed to identify grade or stage at time of diagnosis for the activity levels calculated by PathOlogist. The datasets were evaluated individually. Based on the variance and normality of each pathway’s activity levels in the respective data sets analysis of variance, Tukey-Kramer, Kruskal-Wallis, and Mann-Whitney-Wilcox tests were performed, when appropriate, to determine any statistically significant differences in pathway activity levels. Pathways were identified in both stage and grade data analyses that show significant differences in activity levels across designation. While some overlap is seen, there was a significant number of pathways unique to either stage or grade. These pathways are known to affect the cell cycle, cellular transport, disease, immune system, and metabolism regulation. The biological pathways named by this research depict prospective biomarkers for progression of hepatocellular carcinoma per subdivision within both stage and grade. These findings may be instrumental to new methods of early and more accurate diagnosis. The distinct differences in identified pathways in grade and stage illustrate the need for these new methods to not only look at stage but also grade when determining prognosis. Furthermore, the pathways identified herein have potential to aid in the development of targeted treatment based on the affected biological processes.
ContributorsGarrison, Alyssa Cameron (Author) / Buetow, Kenneth (Thesis advisor) / Hinde, Katie (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2022
161497-Thumbnail Image.png
Description
The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males

The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males and females. The goal of the study was to identify germline variation that differs by sex in hepatocellular carcinoma. Using the program, multiple pathways and genes were identified to have significant differences in their relationship to liver cancer in males and females. In animal studies, the genes which were identified using the PoDA analysis have been shown to impact liver cancer, often with different results for males and females. While these genes are often the focus in animal models, they are absent from current Genome Wide Association Studies (GWAS) catalogs for humans. By working to bridge the results of animal studies and human studies, the results help to identify the causes of liver cancer, and more specifically, the reason the disease affects males at much higher rates. The differences in pathways identified to be significant for the two sexes indicate the germline variance may play sex-specific roles in the development of hepatocellular carcinoma. Additionally, these results reinforce the capacity of the PoDA analysis to identify genes that may be missed by more traditional GWAS methods. This study lays the groundwork for further investigations into the identified genes and pathways, and how they behave differently within males and females.
ContributorsOlson, Erik Jon (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Cartwright, Reed (Committee member) / Arizona State University (Publisher)
Created2021
131681-Thumbnail Image.png
Description
Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient and inexpensive technique, was used for identifying specific DNA mutations. Computational analysis of exome sequencing data was used to make conclusions about copy number variation among common MPM genes. Results show a CDKN2A gene heterozygous deletion in Meso24 cell line. This data is validated by a previous CRISPR-Cas9 outgrowth screen for Meso24 where the knocked-out gene caused increased Meso24 growth.
ContributorsKrdi, Ghena (Author) / Plaisier, Christopher (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131069-Thumbnail Image.png
Description
Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however,

Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however, it can be difficult to find and learn about the which tool is optimal for use in a certain experiment. This thesis aims to comprehensively review four tools, Cytoscape, PaxtoolsR, PathOlogist, and Reactome, and their role in pathway analysis. This is done by applying a known microarray data set to each tool and testing their different functions. The functions of these programs will then be analyzed to determine their roles in learning about biology and assisting new researchers with their experiments. It was found that each tools holds a very unique and important role in pathway analysis. Visualization pathways have the role of exploring individual pathways and interpreting genomic results. Quantification pathways use statistical tests to determine pathway significance. Together one can find pathways of interest and then explore areas of interest.
ContributorsRehling, Thomas Evan (Author) / Buetow, Kenneth (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164992-Thumbnail Image.png
Description

An immune regulatory network was constructed for the purpose of identifying target regulators in malignant pleural mesothelioma for therapies. An identified causal flow linked a mutation of D-dopachrome tautomerase to a heightened expression of regulator ASH1L and consequent down regulation of chemokine CCL5 and invasion of CD8+ T cells. Experimental

An immune regulatory network was constructed for the purpose of identifying target regulators in malignant pleural mesothelioma for therapies. An identified causal flow linked a mutation of D-dopachrome tautomerase to a heightened expression of regulator ASH1L and consequent down regulation of chemokine CCL5 and invasion of CD8+ T cells. Experimental validation of this initial use case indicates mRNA expression of CCL5 within the tumor cells and subsequent protein expression and secretion. Further analyses will explore the migration of CD8+ T cells in response to the chemotactic CCL5.

ContributorsCook, Margaret (Author) / Plaisier, Christopher (Thesis director, Committee member) / Wilson, Melissa (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05