Matching Items (4)
Filtering by

Clear all filters

134935-Thumbnail Image.png
Description
The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied area since they have become associated with the likelihood of patient survival. Further, circulating tumor cells can be used to determine changes in the genome of the cancer leading to targeted treatment. First, the aptamers were attached onto the hydrogel through an EDC/NHS reaction. The aptamers were verified to be attached onto the hydrogel through FTIR spectroscopy. The cell capture experiments were completed by exposing the hydrogel to a solution of leukemia cells for 10 minutes at room temperature. The cell release experiments were completed by exposing the hydrogel to a 40°C solution. Several capture and release experiments were completed to measure how many cells could be captured, how quickly, and how many cells captured were released. The aptamers were chemically attached to the hydrogel. 300 cells per square millimeter could be captured at a time in a 10 minute time period and released in a 5 minute period. Of the cells captured, 96% of them were alive once caught. 99% of cells caught were released once exposed to elevated temperature. The project opens the possibility to quickly and efficiently capture and release tumor cells using only changes in temperature. Further, most of the cells that were captured were alive and nearly all of those were released leading to high survival and capture efficiency.
ContributorsPaxton, Rebecca Joanne (Author) / Stephanopoulos, Nicholas (Thesis director) / He, Ximin (Committee member) / Gould, Ian (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148326-Thumbnail Image.png
Description

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching students life skills, social skills, and emotional intelligence.<br/>In order to prove the value of our service, StreetWise conducted a survey that asked students about their habits, thoughts on stress, and their future. Students from Arizona State University were surveyed with questions on respondent background, employment, number one stressor, preferred learning method, and topics that students were interested in learning. We found that students’ number one stressor was school but was interested in learning skills that would prepare them for their future after graduation. We used the results to make final decisions so that StreetWise could offer lessons that students would get the most value out of. This led to us conducting a second survey which included mock ups of the website, examples of interactive lesson plans, and an overview of the app. Students from the first survey were surveyed in addition to new respondents. This survey was intended for us to ensure that our service would maintain its value to students with the aesthetic and interface that we envisioned.

ContributorsWard, William Henry (Co-author) / Ahir, Hiral (Co-author) / Compton, Katherine (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148328-Thumbnail Image.png
Description

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching

Stress for college students is nothing new and as more kids go to college the number of cases are on the rise. This issue is apparent at colleges across the nation including Arizona State University. StreetWise aims to help students prevent or appropriately deal with stress through interactive lessons teaching students life skills, social skills, and emotional intelligence.<br/>In order to prove the value of our service, StreetWise conducted a survey that asked students about their habits, thoughts on stress, and their future. Students from Arizona State University were surveyed with questions on respondent background, employment, number one stressor, preferred learning method, and topics that students were interested in learning. We found that students’ number one stressor was school but was interested in learning skills that would prepare them for their future after graduation. We used the results to make final decisions so that StreetWise could offer lessons that students would get the most value out of. This led to us conducting a second survey which included mock ups of the website, examples of interactive lesson plans, and an overview of the app. Students from the first survey were surveyed in addition to new respondents. This survey was intended for us to ensure that our service would maintain its value to students with the aesthetic and interface that we envisioned.

ContributorsAhir, Hiral V (Co-author) / Compton, Katherine (Co-author) / Ward, William (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130861-Thumbnail Image.png
Description

The purpose of this project is to analyze the current state of cancer nanomedicine and its challenges. Cancer is the second most deadly illness in the United States after heart disease. Nanomedicine, the use of materials between 1 and 100 nm to for the purpose of addressing healthcare-related problems, is

The purpose of this project is to analyze the current state of cancer nanomedicine and its challenges. Cancer is the second most deadly illness in the United States after heart disease. Nanomedicine, the use of materials between 1 and 100 nm to for the purpose of addressing healthcare-related problems, is particularly suited for treating it since nanoparticles have properties such as high surface area-to-volume ratios and favorable drug release profiles that make them more suitable for tasks such as consistent drug delivery to tumor tissue. The questions posed are: What are the current nanomedical treatments for cancer? What are the technical, social, and legal challenges related to nanomedical treatments and how can they be overcome? To answer the questions mentioned above, information from several scientific papers on nanomedical treatments for cancer as well as from social science journals was synthesized. Based on the findings, nanomedicine has a wide range of applications for cancer drug delivery, detection, and immunotherapy. The main technical challenge related to nanomedical treatments is navigating through biological barriers such as the mononuclear phagocyte system, the kidney, the blood-brain barrier, and the tumor microenvironment. Current approaches to meeting this challenge include altering the size, shape, and charge of nanoparticles for easier passage. The main social and legal challenge related to nanomedical treatments is the difficulty of regulating them due to factors such as the near impossibility of detecting nanowaste. Current approaches to meeting this challenge include the use of techniques such as scanning tunneling microscopy and atomic force microscopy to help distinguish nanowaste from the surroundings. More research will have to be done in these and other areas to enhance a major cancer-fighting tool.

ContributorsAbraham, Alfred Francy (Author) / Brian, Jennifer (Thesis director) / Liu, Yan (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05