Matching Items (105)

Filtering by

Clear all filters

133841-Thumbnail Image.png

The Effects of Human Hairless Gene Overexpression on U87 MG Glioblastoma Cell Function

Description

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The expression of HR in GBM tumor cells is significantly decreased compared to the normal brain tissue and low levels of HR expression is associated with shortened patient survival. We have recently reported that HR is a DNA binding phosphoprotein, which binds to p53 protein and p53 responsive element (p53RE) in vitro and in intact cells. We hypothesized that HR can regulate p53 downstream target genes, and consequently affects cellular function and activity. To test the hypothesis, we overexpressed HR in normal human embryonic kidney HEK293 and GBM U87MG cell lines and characterized these cells by analyzing p53 target gene expression, viability, cell-cycle arrest, and apoptosis. The results revealed that the overexpressed HR not only regulates p53-mediated target gene expression, but also significantly inhibit cell viability, induced early apoptosis, and G2/M cell cycle arrest in U87MG cells, compared to mock groups. Translating the knowledge gained from this research on the connections between HR and GBM could aid in identifying novel therapies to circumvent GBM progression or improve clinical outcome.

Contributors

Agent

Created

Date Created
2018-05

132561-Thumbnail Image.png

Synthesis of Bexarotene Analogs for the Treatment of Breast Cancer

Description

Bexarotene is a synthetic analog of 9-cis-retinoic acid and ligand for the retinoid X receptor which has a history of clinical success in the treatment of T-cell lymphoma. Bexarotene has also shown potential for treating a variety of other cancers,

Bexarotene is a synthetic analog of 9-cis-retinoic acid and ligand for the retinoid X receptor which has a history of clinical success in the treatment of T-cell lymphoma. Bexarotene has also shown potential for treating a variety of other cancers, which we seek to explore in this project. The potential of bexarotene lies in its unique mechanisms and wide application, however, it has shown limited effectiveness thus far in the treatment of breast and lung cancer, with moderate levels of efficacy and symptoms such as cutaneous toxicity, hyperlipidemia, and hypothyroidism. For this project several analogs of bexarotene were synthesized with the intentions of making a more potent ligand that can be used to treat these carcinomas while minimizing harmful side effects. We were successful in synthesizing a large variety of analogs over the span of roughly two years, including iso-chroman derivatives of bexarotene and NEt-TMN, in addition to a new series of analogs of the reported NEt-TMN derivative. These analogs were analyzed via melting point determination and nuclear magnetic resonance (NMR) spectroscopy to confirm the molecular structure and determine purity, and it is our intent to continue with further testing of these compounds to determine their effectiveness as well as the side effects they are likely to cause with levels of toxicity. Recent studies suggest that continuing the analysis of these compounds and other rexinoids like the ones described herein is a worthwhile endeavor as similar rexinoids have shown in numerous assays to be more potent and less toxic in the treatment of cancers when compared with bexarotene.

Contributors

Created

Date Created
2019-05

132751-Thumbnail Image.png

Synthesis and Characterization of LD2 Peptide Analogs to Inhibit Focal Adhesion Kinase in Cancer

Description

In cancer, various genetic and epigenetic alterations cause cancer cells to hyperproliferate and to bypass the survival and migration mechanisms that typically regulate healthy cells. The focal adhesion kinase (FAK) gene produces FAK, a protein that has been implicated in

In cancer, various genetic and epigenetic alterations cause cancer cells to hyperproliferate and to bypass the survival and migration mechanisms that typically regulate healthy cells. The focal adhesion kinase (FAK) gene produces FAK, a protein that has been implicated in tumor progression in various cancers. Compared with normal tissue counterparts, FAK is overexpressed in many cancers. FAK is therefore a promising cancer drug target due to its demonstrated role in cancer invasion and metastasis and inhibition of FAK is important to achieve an optimal tumor response. Small molecule FAK inhibitors have been shown to decrease tumor growth and metastasis in several preclinical trials. However, these inhibitors focus narrowly on the enzymatic portion of FAK and neglect its scaffolding function, leaving FAK’s scaffolding of oncogenic drivers intact. Paxillin, a major focal adhesion-associated protein, binds to FAK, enabling it to localize to focal adhesions, and this is essential for FAK’s activation and function. Therefore, disrupting the protein-protein interaction between FAK and paxillin has been hypothesized to prevent tumor progression. The binding of FAK to paxillin at its focal adhesion targeting (FAT) domain is mediated by two highly conserved leucine-rich sequences, the leucine-aspartic acid (LD) motifs LD2 and LD4. The purpose of this project was to develop novel stapled LD2 peptide analogs that target the protein-protein interaction of FAT to LD2. Peptide stapling was performed to enhance the pharmacological performance of the LD2 peptide analogs. Based on the native LD2 peptide sequence, stapled LD2 peptide analogs were developed with the intent to improve efficacy of cell permeability, while maintaining or improving FAK binding. The LD2 peptide analogs were characterized via surface plasmon resonance, fluorescence polarization, immunofluorescence, and circular dichroism spectroscopy. Successful LD2 stapled peptide analogs can be therapeutically relevant inhibitors of the FAT-LD2 protein-protein interaction in cancer and have the potential for greater efficacy in FAK inhibition, proteolytic resistance, and cell permeability, which is key in preventing tumor progression in cancer.

Contributors

Agent

Created

Date Created
2019-05

132487-Thumbnail Image.png

Production and functional testing of a recombinant fusion protein immunotherapy for glioblastoma

Description

Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom

Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom of the deathstalker scorpion (Leiurus quinquestriatus), binds specifically to glioblastoma (GBM) cells without binding healthy tissue, making it an ideal GBM cell binding moiety for a BiTE-like molecule. However, chlorotoxin’s four disulfide bonds pose a folding challenge outside of its natural context and impede production of the recombinant protein in various expression systems, including those relying on bacteria and plants. To overcome this difficulty, we have engineered a truncated chlorotoxin variant (Cltx∆15) that contains just two of the original eight cystine residues, thereby capable of forming only a single disulfide bond while maintaining its ability to bind GBM cells. We further created a BiTE (ACDClx∆15) which tethers Cltx∆15 to a single chain ⍺-CD3 antibody in order to bring T cells into contact with GBM cells. The gene for ACDClx∆15 was cloned into a pET-11a vector for expression in Escherichia coli and isolated from inclusion bodies before purification via affinity chromatography. Immunoblot analyses confirmed that ACDClx∆15 can be expressed in E. coli and purified with high yield and purity; moreover, flow cytometry indicated that ACDClx∆15 is capable of binding GBM cells. These data warrant further investigation into the ability of ACDClx∆15 to activate T cells against GBM cells.

Contributors

Agent

Created

Date Created
2019-05

132490-Thumbnail Image.png

Codon Optimization of Human TRAIL Gene for Maximal Expression in a Self-Destructing Salmonella Strain for Efficient Colorectal Cancer Treatment

Description

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has long been shown to have inherent tumor targeting properties and have been able to penetrate and exist in all aspects of the tumor environment, something that chemotherapy is unable to achieve. This lab has developed a genetically modified Salmonella typhimurium (GMS) which is able to deliver DNA vaccines or synthesized proteins directly to tumor sites. These GMS strains have been used to deliver human TNF-related apoptosis inducing ligand (TRAIL) protein directly to tumor sites, but expression level was limited. It is the hope of the experiment that codon optimization of TRAIL to S. typhimurium preferred codons will lead to increased TRAIL expression in the GMS. For preliminary studies, BALB/c mice were subcutaneously challenged with CT-26 murine colorectal cancer cells and treated with an intra-tumor injection with either PBS, strain GMS + PCMV FasL (P2), or strain GMS + Pmus FasL). APC/CDX2 mutant mice were also induced to develop human colon polyps and treated with either PBS, strain GMS + vector (P1), P2, or P3. The BALB/c mouse showed statistically significant levels of decreased tumor size in groups treated with P2 or P3. The APC/CDX2 mouse study showed statistically significant levels of decreased colon polyp numbers in groups treated with P3, as expected, but was not significantly significant for groups treated with P1 and P2. In addition, TRAIL was codon optimized for robust synthesis in Salmonella. The construct will be characterized and evaluated in vitro and in vivo. Hopefully, the therapeutic effect of codon optimized TRAIL will be maximal while almost completely minimizing any unintended side effects.

Contributors

Agent

Created

Date Created
2019-05

132442-Thumbnail Image.png

Cloning and expression of antigen-specific T cell receptors

Description

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.

Contributors

Agent

Created

Date Created
2019-05

132454-Thumbnail Image.png

A survey of cancer prevalence within birds (the clave Aves).

Description

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).

Contributors

Agent

Created

Date Created
2019-05

132661-Thumbnail Image.png

The Effects of Mental Health and Familial Support on Childhood Cancer Patients

Description

Children with cancer can experience decreased emotional health along with deteriorating
physical health compared to children without cancer. Many studies have been done to examine the effects of emotional distress and mental health on the cancer patient, as well as

Children with cancer can experience decreased emotional health along with deteriorating
physical health compared to children without cancer. Many studies have been done to examine the effects of emotional distress and mental health on the cancer patient, as well as the role of familial support. It was found that children with cancer may suffer from depression, anxiety, PTSD, and socio-emotional problems as a result of the trauma of being diagnosed and treated for a pervasive, life-threatening disease. Late effects may also worsen co-morbid mental health disorders. Childhood cancer patients who experience co-morbid mental health problems of depression and anxiety end up having a longer duration of recovery, as well as a worsened outcome than others with a single disorder (Massie, 2004). It was also shown that family members are affected emotionally and mentally from dealing with childhood cancer. Not only is the cancer patient at risk for PTSD during or after treatment, but also family members (National Cancer Institute, 2015). Siblings of the child with cancer may experience feelings of loneliness, fear, and anxiety, as the parent’s attention is focused on the child suffering with cancer. According to the National Cancer Institute (2015), familial problems can affect the child’s ability to adjust to the diagnosis and treatment in a positive way. However, children with strong familial and social support adjust easier to living with cancer. A common theme found in literature is that regular mental health checkups during and after cancer treatment is important for quality of life. Therefore, it is important for all childhood cancer patients and their families to receive information about mental health awareness, as well as therapeutic interventions that are developed for families caring for a child with cancer.

Contributors

Agent

Created

Date Created
2019-05

132678-Thumbnail Image.png

DNA Origami as Novel Immune Adjuvants

Description

Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in

Cytokines induced by inflammasome has been used for blood cancer treatments, yet these treatments have been less successful in the solid tumor microenvironment. Here precise-morphology DNA origami structures were implemented to accurately test the effect and mechanism of activation in the NLRP3 inflammasome. THP1 WT cells, a macrophage cell line, were treated with eleven different DNA origami structures. The inflammasome activation of two cytokines, Interleukin 1 beta (IL-1β) and Interferon beta (IFN-β), was measured using HEK Blue IL-1β cells, HEK Blue IFN-β cells, and enzyme linked immunosorbent assay (ELISA). Differences in activation signaling have the potential to provide the characterization required to address the intrinsic complexity of modulating an immune response. It is hoped that DNA origami will help induce more inflammation for solid tumors. The DNA origami was tested in three different volumes: 1 μL, 5 μL, and 10 μL. Overall, the origami that showed promising results were Mg Square. Tetrahedral and P53 block also showed potential but not as well as Mg square. Further testing of more DNA origami structures and testing them in mice are key to the success of targeted cancer immunotherapies in the neoadjuvant setting.

Contributors

Agent

Created

Date Created
2019-05

133149-Thumbnail Image.png

The Genomics of Cancer Resistance in Long-Lived Vesper Bats

Description

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.

Contributors

Agent

Created

Date Created
2018-12