Matching Items (5)
Filtering by

Clear all filters

133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134076-Thumbnail Image.png
Description
Exosomes have been known to secrete an increased amount of miRNA and noncoding genes that are abnormally expressed in various cancer subtypes. Thus, they may be an early marker for pediatric cancer types that are more difficult to diagnosis without invasive techniques, and may also help identify progression of the

Exosomes have been known to secrete an increased amount of miRNA and noncoding genes that are abnormally expressed in various cancer subtypes. Thus, they may be an early marker for pediatric cancer types that are more difficult to diagnosis without invasive techniques, and may also help identify progression of the disease. In the project, six types of pediatric cancer cell lines, along with their extracted exosomes, were analyzed and tested for different monoclonal antibodies through western blot analysis. The genes EWS-FLI1 and FGFR4 were also identified in some cancer cell lines through Reverse-Transcriptase Polymerase Chain Reaction analysis (RT-PCR). The results were indicative of similar protein markers being found in both the originating cells and their corresponding exosomes.
ContributorsKaur Bhinder, Harsimran (Author) / Lake, Douglas (Thesis director) / Azorsa, David (Committee member) / Barrett, The Honors College (Contributor)
Created2017-12
137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137667-Thumbnail Image.png
Description
The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member

The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion and survival via binding to the fibroblast growth factor-inducible 14 (Fn14) receptor and subsequent activation of the Rac1/NF-kappaB pathway. In addition, we have reported previously that Fn14 is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Here we demonstrate that TWEAK can act as a chemotactic factor for glioma cells, a potential process to drive cell invasion into the surrounding brain tissue. Specifically, we detected a chemotactic migration of glioma cells to the concentration gradient of TWEAK. Since Src family kinases (SFK) have been implicated in chemotaxis, we next determined whether TWEAK:Fn14 engagement activated these cytoplasmic tyrosine kinases. Our data shows that TWEAK stimulation of glioma cells results in a rapid phosphorylation of the SFK member Lyn as determined by multiplex Luminex assay and verified by immunoprecipitation. Immunodepletion of Lyn by siRNA oligonucleotides suppressed the chemoattractive effect of TWEAK on glioma cells. We hypothesize that TWEAK secretion by cells present in the glioma microenvironment induce invasion of glioma cells into the brain parenchyma. Understanding the function and signaling of the TWEAK-Fn14 ligand-receptor system may lead to development of novel therapies to therapeutically target invasive glioma cells.
ContributorsJameson, Nathan Meade (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Tran, Nhan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
Description
With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially

With cancer rates increasing and affecting more people every year, I felt it was important to educate the younger generation about the potential factors that could put them at risk of receiving a cancer diagnosis later in life. I thought that this was important to do because most students, especially in rural communities, are not taught the factors that increase your risk of getting cancer in the future. This leads to students not having the tools to think about the repercussions that their actions can have in their distant future in regard to their risk of getting cancer. I went to six schools throughout the valley and the White Mountains of Arizona with differing education levels and demographics to provide them with prevention strategies that they could implement into their daily lives to reduce their risk of getting cancer in the future. Some of the schools had curriculums that included cancer and some of the factors that increase your risk, while others never mention what is happening biologically when a person has cancer. I introduced factors such as no smoking or tobacco use, diet, exercise, sunscreen use, avoiding alcohol, and getting screened regularly. While at each school, I discussed the importance of creating these healthy habits while they are young because cancer is a disease that comes from the accumulation of mutations that can begin occurring in their bodies even now. After my presentation, 98.6% of the 305 students who viewed my presentation felt like they had learned something from the presentation and were almost all willing to implement at least one of the changes into their daily lives.
ContributorsGoforth, Michelle Nicole (Author) / Compton, Carolyn (Thesis director) / Lake, Douglas (Committee member) / Popova, Laura (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05