Matching Items (3)
Filtering by

Clear all filters

136562-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the mechanisms that govern NSCLC cell invasion and therapeutic resistance, and to target these phenotypes towards abating the dismal five-year survival of NSCLC. The expression of the tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A; Fn14) correlates with poor patient survival and invasiveness in many tumor types including NSCLC. We hypothesize that suppression of Fn14 will inhibit NSCLC cell motility and reduce cell viability. Here we demonstrate that atorvastatin calcium treatment reduces Fn14 expression in NSCLC cell lines. Prior to Fn14 protein suppression, atorvastatin calcium modulated the expression of the Fn14 modulators P-ERK1/2 and P-NF-κβ. Atorvastatin calcium treatment inhibited the migratory capacity in H1975, H2030 and H1993 cells by at least 55%. When chemotactic migration in H2030 cells was induced by the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK) treatment, atorvastatin calcium successfully negated any stimulatory effects. Inversely, treatment of NSCLC cells with cholesterol resulted in a statistically significant increase in migration. Depletion of Fn14 expression via siRNA suppressed the migratory effect of cholesterol. Finally, atorvastatin calcium treatment sensitized cells to radiation treatment, reducing cell survival. These data suggest that atorvastatin calcium may inhibit NSCLC invasiveness through a mechanism involving Fn14, and may be a novel therapeutic target in NSCLC tumors expressing Fn14.
ContributorsCornes, Victoria Elisabeth (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136268-Thumbnail Image.png
Description
ABSTRACT
Environmental and genetic factors influence schizophrenia risk. Individuals who have direct family members with schizophrenia have a much higher incidence. Also, acute stress or life crisis may precede the onset of the disease. This study aims to understand the effects of environment on genes related to schizophrenia risk. It investigates

ABSTRACT
Environmental and genetic factors influence schizophrenia risk. Individuals who have direct family members with schizophrenia have a much higher incidence. Also, acute stress or life crisis may precede the onset of the disease. This study aims to understand the effects of environment on genes related to schizophrenia risk. It investigates the impact of sleep deprivation as an acute environmental stressor on the expression of Htr2a in mice, a gene that codes for the serotonin 2A receptor (5-HT2AR). HTR2A is associated with schizophrenia risk through genetic association studies and expression is decreased in post-mortem studies of patients with the disease. Furthermore, sleep deprivation as a stressor in human trials has been shown to increase the binding capacity of 5-HT2AR. We hypothesize that sleep deprivation will increase the number of cells expressing Htr2a in the mouse anterior prefrontal cortex when compared to controls. Sleep deprived that mice express EGFP under control of the Htr2a promoter displayed anteroposterior gradients of expression across sagittal sections, with concentrations seen most densely within the prefrontal cortex as well as the anterior pretectal nucleus, thalamic nucleus, as well as the cingulate gyrus. Htr2a-EGFP expression was most densely visualized in cortical layer V and VI pyramidal neurons within the lateral prefrontal cortex of coronal sections. Furthermore, the medial prefrontal cortex contained significantly cells expressing Htr2a¬-EGFP than the lateral prefrontal cortex. Ultimately, the hypothesis was not supported and sleep deprivation did not result in more ¬Htr2a-EGFP expressing cells compared to basal levels. However, expressing cells appeared visibly brighter in sleep-deprived animals when compared to controls, indicating that the amount of intracellular Htr2a-GFP expression may be higher. This study provides strong visual representations of expression gradients following sleep deprivation as an acute stressor and paves the way for future studies regarding 5H-T2AR’s role in schizophrenia.
ContributorsSchmitz, Kirk Andrew (Author) / Gallitano, Amelia (Thesis director) / Stout, Valerie (Committee member) / Maple, Amanda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134834-Thumbnail Image.png
Description
Esophageal adenocarcinoma is one of the largest growing cancer types in the United States and the whole world. One of the only known precursors to EAC is Barrett’s Esophagus, the changing of the normal squamous cells which line the esophagus into intestinal cells, following repeated exposure to gastric acids via

Esophageal adenocarcinoma is one of the largest growing cancer types in the United States and the whole world. One of the only known precursors to EAC is Barrett’s Esophagus, the changing of the normal squamous cells which line the esophagus into intestinal cells, following repeated exposure to gastric acids via gastroesophageal reflux disease. There is limited knowledge of the mutations and drivers that contribute to EAC’s low 5-year survival rates, demonstrating a need to identify new therapeutic targets. Given the development of EAC from chronic inflammation and acidic microenvironment, elevated expression of tumor necrosis factor receptor super family member 12A (TNFRSF12A, FN14) and its corresponding ligand, TWEAK, is correlated with disease progression. The functional role of the TWEAK/FN14 signaling axis is well documented in other cancer types, contributing to tumor invasion, migration, and survival. However, reports have shown the TWEAK/FN14 signaling axis can contribute “pro-cancer” and “anti-cancer” phenotypes in different tumor microenvironments. In this study, we seek to demonstrate the functional role of TWEAK and FN14 in EAC survival and migration. We hypothesized TWEAK/FN14 signaling would promoted EAC cell survival and migration. In this study, we illustrate increased expression of FN14 with disease progression. Following treatment with TWEAK, human EAC cell lines had increased sensitivity to standard chemotherapy treatment in vitro. Treatment with TWEAK also correlated with increased cellular migration, most likely in correlation with NF-κB activation. Finally, we showed that inhibition of FN14 via siRNA significantly reduced EAC survival and increased efficacy of standard of care treatments. This data suggests a diverse functional role of the TWEAK/FN14 signaling axis in EAC, and may be a potential target for novel therapeutics.
ContributorsFornefeld, Lucas Christien (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12