Matching Items (22)
Filtering by

Clear all filters

152943-Thumbnail Image.png
Description
In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while the much more aggressive strain

appears in a smaller region inside of the tumor. Simulations show that if the aggressive strain focuses its efforts on proliferating and does not contribute to angiogenesis signaling when in a hypoxic state, a hypertumor will form. More importantly, this resultant aggressive tumor is paradoxically prone to extinction and hypothesize is the cause of necrosis in many vascularized tumors.
ContributorsAlvarez, Roberto L (Author) / Milner, Fabio A (Thesis advisor) / Nagy, John D. (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Mahalov, Alex (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2014
153468-Thumbnail Image.png
Description
The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate

The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate to the intracellular concentration of a limiting nutrient. Although the Droop model has been an important modeling tool in ecology, it has only recently been applied to study cancer biology. Cancer cells live in an ecological setting, interacting and competing with normal and other cancerous cells for nutrients and space, and evolving and adapting to their environment. Here, the Droop equation is used to model three cancers.

First, prostate cancer is modeled, where androgen is considered the limiting nutrient since most tumors depend on androgen for proliferation and survival. The model's accuracy for predicting the biomarker for patients on intermittent androgen deprivation therapy is tested by comparing the simulation results to clinical data as well as to an existing simpler model. The results suggest that a simpler model may be more beneficial for a predictive use, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting.

Next, two chronic myeloid leukemia models are compared that consider Imatinib treatment, a drug that inhibits the constitutively active tyrosine kinase BCR-ABL. Both models describe the competition of leukemic and normal cells, however the first model also describes intracellular dynamics by considering BCR-ABL as the limiting nutrient. Using clinical data, the differences in estimated parameters between the models and the capacity for each model to predict drug resistance are analyzed.

Last, a simple model is presented that considers ovarian tumor growth and tumor induced angiogenesis, subject to on and off anti-angiogenesis treatment. In this environment, the cell quota represents the intracellular concentration of necessary nutrients provided through blood supply. Mathematical analysis of the model is presented and model simulation results are compared to pre-clinical data. This simple model is able to fit both on- and off-treatment data using the same biologically relevant parameters.
ContributorsEverett, Rebecca Anne (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Milner, Fabio (Committee member) / Crook, Sharon (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Arizona State University (Publisher)
Created2015
135193-Thumbnail Image.png
Description
This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible

This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible conditions, each of which were comprised of a combination of one of two levels for three total independent variables: war frame ("War on Cancer" frame or neutral frame), loss-gain prime (loss prime or gain prime), and patient gender (female or male). Each of the three variables were operationalized to determine whether or not the exposure to the war on cancer paradigm, loss-frame language, or male patient gender would increase the likelihood of a participant choosing a more aggressive cancer treatment. Participants read a patient scenario and were asked to respond to questions related to motivating factors. Participants were then asked to report preference for one of two treatment decisions. Participants were then asked to provide brief demographic information in addition to responding to questions about military history, war attitudes, and cancer history. The aforementioned manipulations sought to determine whether exposure to various factors would make a substantive difference in final treatment decision. Contrary to the predicted results, participants in the war frame condition (M = 3.85, SD = 1.48) were more likely to choose the pursuit of palliative care (as opposed to aggressive treatment) than participants in the neutral frame condition (M = 3.54, SD = 1.23). Ultimately, these significant findings suggest that there is practical information to be gained from treatment presentation manipulations. By arming healthcare providers with a more pointed understanding of the nuances of treatment presentation, we can hope to empower patients, their loved ones, and healthcare providers entrenched in the world of cancer treatment.
ContributorsKnowles, Madelyn Ann (Author) / Kwan, Virginia S. Y. (Thesis director) / Presson, Clark (Committee member) / Salamone, Damien (Committee member) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136447-Thumbnail Image.png
Description
The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or

The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or to the war prime condition (N=126). Participants in the control condition did not receive the metaphor manipulation while participants in the war prime condition received the subtle "war on cancer" metaphor prime. After the prime was given, participants read a scenario, answered questions related to the situation, and responded to demographic questions. The results suggested that, compared to participants in the no-prime condition, participants exposed to the war metaphor were more likely to (a) view melanoma as an acute disease, (b) choose chemotherapy over molecular tests, and (c) prefer more aggressive treatment. These findings illustrated the unintended consequences of the "war on cancer" slogan. The results were encouraging and in the predicted direction, but the effect size was small. The discussion section described possible future directions for research.
ContributorsShangraw, Ann Mariah (Author) / Kwan, Virginia (Thesis director) / Neuberg, Steven (Committee member) / Cavanaugh Toft, Carolyn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
133171-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.
ContributorsFreed, Rebecca (Co-author) / Snopko, Morgan (Co-author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134085-Thumbnail Image.png
Description
The rate of cancer incidence is a morbid figure. Twenty years ago, 1 in 2 men and 1 in 3 women were predicted to be afflicted by cancer throughout their lifetime (Cancer Facts & Figures- 1998). In 2017, the rate remains the same ("Cancer Statistic Center"). Every year, more people

The rate of cancer incidence is a morbid figure. Twenty years ago, 1 in 2 men and 1 in 3 women were predicted to be afflicted by cancer throughout their lifetime (Cancer Facts & Figures- 1998). In 2017, the rate remains the same ("Cancer Statistic Center"). Every year, more people are affected by cancer, which is a physiologically, psychologically, emotionally and socially devastating disease. And yet the language and metaphors we use to describe cancer focus our attention on the "fight" of the heroic individual against the brutal disease or on finding a cure. Despite this narrow rhetoric, there are many meaningful, supportive, and palliative measures designed to substantively and holistically care for cancer patients, beyond their medical treatment. Many of these interventions help the patient feel supported (and less alone in this "battle") by building robust communities. In this thesis, I argue the summer camps for children affected by cancer are meaningful interventions that offer palliative care throughout their treatment by creating support networks with peers going through similar medical procedures. Drawing on anecdotal evidence from three cancer camps and a detailed literature review of a subset of palliative interventions designed to promote well-being, this thesis proposes a new model for a summer camp that focuses on emotional processing emotional expression, positive psychology in order to improve palliative care for cancer patients.
ContributorsPearce, Spencer Taylor (Author) / Miller, April (Thesis director) / Brian, Jennifer (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134943-Thumbnail Image.png
Description
Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.
ContributorsMillea, Timothy Michael (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12