Matching Items (2)
Filtering by

Clear all filters

133841-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The expression of HR in GBM tumor cells is significantly decreased compared to the normal brain tissue and low levels of HR expression is associated with shortened patient survival. We have recently reported that HR is a DNA binding phosphoprotein, which binds to p53 protein and p53 responsive element (p53RE) in vitro and in intact cells. We hypothesized that HR can regulate p53 downstream target genes, and consequently affects cellular function and activity. To test the hypothesis, we overexpressed HR in normal human embryonic kidney HEK293 and GBM U87MG cell lines and characterized these cells by analyzing p53 target gene expression, viability, cell-cycle arrest, and apoptosis. The results revealed that the overexpressed HR not only regulates p53-mediated target gene expression, but also significantly inhibit cell viability, induced early apoptosis, and G2/M cell cycle arrest in U87MG cells, compared to mock groups. Translating the knowledge gained from this research on the connections between HR and GBM could aid in identifying novel therapies to circumvent GBM progression or improve clinical outcome.
ContributorsBrook, Lemlem Addis (Author) / Blattman, Joseph (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / Harrington Bioengineering Program (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133470-Thumbnail Image.png
Description
The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and

The human hairless gene (HR) encodes a 130 kDa transcription factor that is primarily expressed in the brain and skin. In the promoter and 5'-untranslated regions (5'-UTR) of HR, there are three putative consensus p53 responsive elements (p53RE). p53 is a tumor suppressor protein that regulates cell proliferation, apoptosis, and other cell functions. The p53 protein, a known tumor suppressor, acts as a transcription factor and binds to DNA p53REs to activate or repress transcription of the target gene. In general, the p53 binding sequence is 5'-RRRCWWGYYY-3' where W is A or T, and R and Y are purines or pyrimidines, respectively. However, even if the p53 binding sequence does not match the consensus sequence, p53 protein might still be able to bind to the response element. The intent of this investigation was to identify and characterize the p53REs in the promoter and 5'-UTR of HR. If the three p53REs (p53RE1, p53RE2, and p53RE3) are functional, then p53 can bind there and might regulate HR gene expression. The first aim for this thesis was to clone the putative p53REs into a luciferase reporter and to characterize the transcription of these p53REs in glioblastoma (U87 MG) and human embryonic kidney (HEK293) cell lines. Through the transactivation assay, it was discovered that p53REs 2 and 3 were functional in HEK293, but none of the response elements were functional in U87 MG. Since p53 displayed a different regulatory capacity of HR expression in HEK293 and U87 MG cells, the second aim was to verify whether the p53REs are mutated in GBM U87 MG cells by genomic DNA sequencing.
ContributorsMaatough, Anas (Author) / Neisewander, Janet (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05