Matching Items (4)
Filtering by

Clear all filters

136167-Thumbnail Image.png
Description
Bexarotene (Targretin®) is an FDA approved drug used to treat cutaneous T-cell lymphoma (CTCL), as well as off-label treatments for various cancers and neurodegenerative diseases. Previous research has indicated that bexarotene has a specific affinity for retinoid X receptors (RXR), which allows bexarotene to act as a ligand-activated-transcription factor

Bexarotene (Targretin®) is an FDA approved drug used to treat cutaneous T-cell lymphoma (CTCL), as well as off-label treatments for various cancers and neurodegenerative diseases. Previous research has indicated that bexarotene has a specific affinity for retinoid X receptors (RXR), which allows bexarotene to act as a ligand-activated-transcription factor and in return control cell differentiation and proliferation. Bexarotene targets RXR homodimerization to drive transcription of tumor suppressing genes; however, adverse reactions occur simultaneously when bound to other nuclear receptors. In this study, we used novel bexarotene analogs throughout 5 iterations synthesized in the laboratory of Dr. Wagner to test for their potency and ability to bind RXR. The aim of our study is to quantitatively measure RXR homodimerization driven by bexarotene analogs using a yeast two-hybrid system. Our results suggests there to be several compounds with higher protein activity than bexarotene, particularly in generations 3.0 and 5.0. This higher affinity for RXR homodimers may help scientists identify a compound that will minimize adverse effects and toxicity of bexarotene and serve as a better cancer treatment alternative.
ContributorsSeto, David Hua (Author) / Marshall, Pamela (Thesis director) / Wagner, Carl (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
133995-Thumbnail Image.png
Description
Cancer, a disease which affects many lives, has been the topic of interest for this research. Treatment options are often available to help lessen the effects of the disease and in regards to cutaneous T-cell lymphoma (CTCL), no cure currently exists. An FDA approved drug by the name of Bexarotene

Cancer, a disease which affects many lives, has been the topic of interest for this research. Treatment options are often available to help lessen the effects of the disease and in regards to cutaneous T-cell lymphoma (CTCL), no cure currently exists. An FDA approved drug by the name of Bexarotene has been developed to provide chemotherapeutic effects within CTCL. Bexarotene has also been used in trials of breast cancer, lung cancer, glioblastoma multiforme and various neurodegenerative diseases. Yet the medication often causes serious side effects including hyperthyroidism, raised triglyceride levels and cutaneous toxicity. The focus of this research is to synthesize a hydroxylated analog compound of Bexarotene in efforts to produce a molecule that provides better chemotherapeutic effects while also lessening the various side effects caused. Synthesis of the molecule followed various organic chemistry techniques and reactions to create the final product. Melting point analysis, NMR and other various characterization data helped to confirm the synthesis of the intended molecule. Preliminary bioassay data results of the analog compound showed similar potency to that of Bexarotene. Further testing, however, will be required to determine the full pharmacokinetic profile of the molecule. Future direction of the research focuses on both further testing of the hydroxylated analog as well synthesizing newer analog compounds to find a molecule that can provide the best effects within cutaneous T-cell lymphoma and the various other diseases as well.
ContributorsMinasian, Ani Christina (Author) / Wagner, Carl (Thesis director) / Marshall, Pamela (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application

The ever-increasing importance of cancer and neurodegenerative diseases continues to grow as populations across the world are affected by death and aging. The vitamin A (RXR) and vitamin D (VDR) receptor pathways offer promising potential to aid in treatment of cancer and Alzheimer’s disease. This thesis discusses the potential application of novel analogs of Bexarotene (RXR agonist), MeTC7 (a new potent VDR antagonist), and vitamin D as possible therapeutics for cancer and Alzheimer’s disease.

ContributorsHong, Jennifer (Author) / Jurutka, Peter (Thesis director) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
189277-Thumbnail Image.png
Description
Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More

Bexarotene is a Food and Drug administration (FDA)-approved therapeutic used in the treatment of cutaneous T-cell lymphoma (CTCL). However, bexarotene therapy causes significant side effects like hyperlipidemia and hypothyroidism due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. More recently bexarotene has shown promise to reverse neurodegeneration, improve cognition and decrease levels of amyloid- β in transgenic mice expressing familial Alzheimer’s disease (AD) mutations. Bexarotene is a high affinity ligand for the retinoid X receptor (RXR) that heterodimerizes with the liver- X- receptors (LXR) and with peroxisome proliferator-activated receptor-gamma (PPARϒ) to control cholesterol efflux, inflammation, and transcriptionally upregulates the production of apolipoprotein (ApoE) in the brain. Enhanced ApoE expression may promote clearance of soluble Aβ peptides from the brain and reduce Aβ plaques, thus resolving both amyloid pathology and cognitive deficits. The present study assessed the potential of bexarotene and a group of 62 novel rexinoids to bind and activate RXR using a series of biological assays and screening methods, including: 1) a mammalian two-hybrid system (M2H) and an 2) Retinoid X Receptor response element (RXRE)-mediated reporter assays in cultured human cells. Moreover, Liver X Receptor response element (LXRE)-mediated luciferase assays were performed to analyze the ability of the novel analogs to activate LXRE - directed transcription, and to induce ApoE messenger ribonucleic acid (mRNA) in U87 glial cells. Furthermore, the most potent analogs were analyzed via quantitative polymerase chain reaction (qPCR) to determine efficacy in modulating expression of two critical tumor suppressor genes, activating transcription factor 3 (ATF3) and early growth response 3 (EGR3). Results from these multiple assays indicate that the panel of RXR ligands contains compounds with a range of activities, with some analogs capable of binding to RXR with higher affinity than others, and in some cases upregulating ApoE expression to a greater extent than bexarotene. The data suggests that minor modifications to the bexarotene core chemical structure may yield novel analogs possessing an equal or greater capacity to activate RXR and may be useful as therapeutic agents against CTCL and Alzheimer’s disease.
ContributorsReshi, Sabeeha Mushtaq (Author) / Jurutka, Peter (Thesis advisor) / Wagner, Carl (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2023