Matching Items (27)
Filtering by

Clear all filters

135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135192-Thumbnail Image.png
Description
Volunteer motivation and satisfaction were assessed at Project CURE, a nonprofit that collects, sorts, tests, and ships donated medical supplies and equipment to healthcare facilities in developing countries. This research was the result of a yearlong partnership between the Community Action Research Experiences (CARE) program and Project CURE. Volunteers at

Volunteer motivation and satisfaction were assessed at Project CURE, a nonprofit that collects, sorts, tests, and ships donated medical supplies and equipment to healthcare facilities in developing countries. This research was the result of a yearlong partnership between the Community Action Research Experiences (CARE) program and Project CURE. Volunteers at Project CURE were surveyed (N=147) after completing a volunteer session to assess their motivation for volunteering, satisfaction with their experience, and any recommendations they had for improving the volunteer program. Five categories of motivating factors were assessed and it was found that the Values and Understanding categories were the strongest motivating factors. Overall, volunteers rated their experience highly, but the results indicated a number of small changes that Project CURE could make to better meet volunteers' needs, and better communicate the impact of volunteers' work, which could pave the way to increases in the numbers of volunteer hours Project CURE receives and increased quality of volunteer work.
ContributorsStepanek, Rachel (Author) / Reesing, Amy (Thesis director) / Dumka, Larry (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Each family approaches a cancer diagnosis differently. While some families pursue traditional treatments to the fullest extent, others attempt to refuse chemotherapy, often in favor of alternative medicines. When the patient is a minor, his or her parents have the authority to make medical decisions on their behalf, and this

Each family approaches a cancer diagnosis differently. While some families pursue traditional treatments to the fullest extent, others attempt to refuse chemotherapy, often in favor of alternative medicines. When the patient is a minor, his or her parents have the authority to make medical decisions on their behalf, and this authority is constitutionally protected and socially upheld. However, when the decision to forgo chemotherapy does not comply with minimum standard of care and puts the minor's life in danger, legal action can and has been taken to force the minor to undergo chemotherapy. Legal precedent and biomedical ethics principles guide the decision-making process of the physicians and judges involved, although there is no official framework by which to prioritize these principles. Neglect and abuse procedures, as well as capacity determinations, mature minor doctrines, and religious convictions, add complexity to each forced chemotherapy case. These complexities were explored through the context of four case studies: Cassandra Callendar, who was not granted mature minor status and was forced into treatment by the Connecticut Supreme court; Starchild Abraham Cherrix, who was allowed to pursue the alternative Hoxsey therapy with the consent of his parents and the local court; Dennis Lindberg, a 14-year-old Jehovah's Witness who was permitted to refuse blood transfusions under the Mature Minor Doctrine; and Daniel Hauser, a developmentally delayed teen who was forced to undergo therapy against his parents' religious convictions. In the analysis and comprehensive comparison of these cases, it was concluded that an attempt to establish a protocol by which to determine the ethics of forcing chemotherapy, while well-intended, would ultimately be ineffective and extremely complex. Thus, each forced chemotherapy case must be evaluated on an individual basis.
ContributorsNelson, Sarah Gabrielle (Author) / Hendrickson, Kirstin (Thesis director) / Lynch, John (Committee member) / Jaramillo, Andres (Committee member) / School of Molecular Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134085-Thumbnail Image.png
Description
The rate of cancer incidence is a morbid figure. Twenty years ago, 1 in 2 men and 1 in 3 women were predicted to be afflicted by cancer throughout their lifetime (Cancer Facts & Figures- 1998). In 2017, the rate remains the same ("Cancer Statistic Center"). Every year, more people

The rate of cancer incidence is a morbid figure. Twenty years ago, 1 in 2 men and 1 in 3 women were predicted to be afflicted by cancer throughout their lifetime (Cancer Facts & Figures- 1998). In 2017, the rate remains the same ("Cancer Statistic Center"). Every year, more people are affected by cancer, which is a physiologically, psychologically, emotionally and socially devastating disease. And yet the language and metaphors we use to describe cancer focus our attention on the "fight" of the heroic individual against the brutal disease or on finding a cure. Despite this narrow rhetoric, there are many meaningful, supportive, and palliative measures designed to substantively and holistically care for cancer patients, beyond their medical treatment. Many of these interventions help the patient feel supported (and less alone in this "battle") by building robust communities. In this thesis, I argue the summer camps for children affected by cancer are meaningful interventions that offer palliative care throughout their treatment by creating support networks with peers going through similar medical procedures. Drawing on anecdotal evidence from three cancer camps and a detailed literature review of a subset of palliative interventions designed to promote well-being, this thesis proposes a new model for a summer camp that focuses on emotional processing emotional expression, positive psychology in order to improve palliative care for cancer patients.
ContributorsPearce, Spencer Taylor (Author) / Miller, April (Thesis director) / Brian, Jennifer (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135091-Thumbnail Image.png
Description
The goal of the International Rescue Committee (IRC, created by Albert Einstein in 1933) is to serve those “whose lives and livelihoods are shattered by conflict and disaster to survive, recover, and gain control of their future,” (6), by providing victims of humanitarian crises with health care, education, and counseling.

The goal of the International Rescue Committee (IRC, created by Albert Einstein in 1933) is to serve those “whose lives and livelihoods are shattered by conflict and disaster to survive, recover, and gain control of their future,” (6), by providing victims of humanitarian crises with health care, education, and counseling. The IRC of Phoenix branch holds this same mission through the services it provides to the refugees of the Phoenix area. One important need that is not currently met by the IRC of Phoenix is the special health care needs of pregnant refugee women. The IRC of Phoenix is seeking funds to initiate a new “Prenatal Care Program” to meet the needs of the 40 or so pregnant refugees who come to our area each year.
This new program will build upon the existing programs currently provided by the IRC of Phoenix, including support in areas of resettlement, finance, community integration, and health. The objectives of this new prenatal-focused program are to serve the needs of pregnant refugee women by providing the physical and emotional support they need through partnerships with hospitals (such as Saint Joseph’s Hospital) and organizations (such as the Refugee Women’s Health Clinic of Phoenix).
The target audience includes women who seek refuge in the Phoenix area in the midst of a pregnancy, or with the intention to become pregnant and who are receiving other services from the IRC of Phoenix. This grant will fund a prenatal care caseworker position for as long as there are incoming funds and pregnant refugee women in Phoenix. The prenatal care caseworker’s duties include:
● Monitoring the overall health of pregnant refugee women assisted by the IRC of Phoenix
● Expanding access to prenatal care for pregnant refugee women
● Connecting pregnant refugee women with necessary information on healthy pregnancies and introducing them to childcare programs that the IRC of Phoenix currently provides
● Creating and maintaining strong relationships with hospitals and health care facilities
● Accompanying pregnant refugee women to medical appointments as needed
● Participating in all other duties necessary to ensure the safe pregnancy of refugee women under the care of the IRC of Phoenix
To evaluate the success of the program, the IRC of Phoenix will monitor the number of pregnant refugee women seeking help and monitor health to see how the women are being served and the number of these women who are fully served based on the above objectives. The required grant money needed each year amounts to $40,000. A multi-year commitment of at least five years is expected. This funding represents the annual salary of the newly hired caseworker, and the IRC of Phoenix will be covering administration costs, supplies, and equipment.
ContributorsBatty, Rebecca (Co-author) / Gerais, Reem (Co-author) / Weitz, Rose (Thesis director) / Faurel, Lucile (Committee member) / Department of Information Systems (Contributor) / School of Accountancy (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134935-Thumbnail Image.png
Description
The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied area since they have become associated with the likelihood of patient survival. Further, circulating tumor cells can be used to determine changes in the genome of the cancer leading to targeted treatment. First, the aptamers were attached onto the hydrogel through an EDC/NHS reaction. The aptamers were verified to be attached onto the hydrogel through FTIR spectroscopy. The cell capture experiments were completed by exposing the hydrogel to a solution of leukemia cells for 10 minutes at room temperature. The cell release experiments were completed by exposing the hydrogel to a 40°C solution. Several capture and release experiments were completed to measure how many cells could be captured, how quickly, and how many cells captured were released. The aptamers were chemically attached to the hydrogel. 300 cells per square millimeter could be captured at a time in a 10 minute time period and released in a 5 minute period. Of the cells captured, 96% of them were alive once caught. 99% of cells caught were released once exposed to elevated temperature. The project opens the possibility to quickly and efficiently capture and release tumor cells using only changes in temperature. Further, most of the cells that were captured were alive and nearly all of those were released leading to high survival and capture efficiency.
ContributorsPaxton, Rebecca Joanne (Author) / Stephanopoulos, Nicholas (Thesis director) / He, Ximin (Committee member) / Gould, Ian (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134826-Thumbnail Image.png
Description
As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of

As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of DNA-nanostructures, a DNA tetrahedron nanostructure was explored as a drug carrier. The nanostructure can be decorated with various molecules to either increase immunogenicity, toxicity, or affinity to a specific cell type. The efficiency of the specific binding and internalization of the chosen molecules was measured via flow cytometry. Using a murine B cell lymphoma as the model system, several targeting molecules have been evaluated for their specific binding and induced internalization of DNA nanostructures, including an anti-Igκ antibody, an idiotype-binding peptide, and a g-quadruplex nucleolin specific aptamer. It was found that adding the anti-Igκ antibody appeared to provide increased binding and facilitated cellular internalization. Also, it was found that the presence of CpG appeared to aid in the binding of nanostructures decorated with other molecules, as compared to nanostructures without CpG. The g-quadruplex aptamer thought to specifically bind cancer cells that overexpress nucleolin was tested and found to have better binding to cells when linked to the nanostructure than when alone. The drug doxorubicin was used to load the DNA-nanostructure and attempt to inhibit cancer cell growth. The DNA-nanostructure has the benefit of being self-assembled and customizable, and it has been shown to bind to and internalize into a cancer cell line. The next steps are to test the toxicity of the nanostructure as well as its specificity for cancerous cells compared to noncancerous cells. Furthermore, once those tests are completed the structure’s drug delivery capacity will be tested in tumor bearing mice. The DNA-nanostructure exhibits potential as a cancer specific therapeutic.
ContributorsGomez, Amber Marie (Author) / Chang, Yung (Thesis director) / Anderson, Karen (Committee member) / Liu, Xiaowei (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134792-Thumbnail Image.png
Description
While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need

While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need for a better understanding of how different drugs affect the fitness of clones within a tumor population and promote or delay the emergence of resistance. To this end, we have developed an assay that defines the in vitro rate of adaptation by analyzing the progressive change in sensitivity of a melanoma cell line to different treatments. We performed a proof-of-theory experiment based on the hypothesis that drugs that cause cell death (cytotoxic) impose a higher selection pressure for drug-resistant clones than drugs that cause cell-cycle arrest (cytostatic drugs), thereby resulting in a faster rate of adaptation. We tested this hypothesis by continuously treating the BRAFV600E melanoma cell line A375 with the cytotoxic MEK inhibitor E6201 and the cytostatic MEK inhibitor trametinib, both of which are known to be effective in the setting of constitutive oncogenic signaling driven by the BRAF mutation. While the identification of confounding factors prevented the direct comparison between E6201-treated and trametinib-treated cells, we observed that E6201-treated cells demonstrate decreased drug sensitivity compared to vehicle-treated cells as early as 18 days after treatment begins. We were able to quantify this rate of divergence at 2.6% per passage by measuring the increase over time in average viability difference between drug-treated and vehicle-treated cells within a DDR analysis. We argue that this value correlates to the rate of adaptation. Furthermore, this study includes efforts to establish a barcoded cell line to allow for individual clonal tracking and efforts to identify synergistic and antagonist drug combinations for use in future experiments. Ultimately, we describe here a novel system capable of quantifying adaptation rate in cancer cells undergoing treatment, and we anticipate that this assay will prove helpful in identifying treatment options that circumvent or delay resistance through future hypothesis-driven experiments.
ContributorsDe Luca, Valerie Jean (Author) / Wilson Sayres, Melissa (Thesis director) / Trent, Jeff (Committee member) / Hendricks, William (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12