Matching Items (15)
Filtering by

Clear all filters

135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136330-Thumbnail Image.png
Description
We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We

We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We examine this process on complete graphs, bipartite graphs, and the integers, answering questions about the relationship between communication, defection rates and the division of labor. Assuming the division of labor is ideal when exactly half of the colony is performing each task, we nd that on some bipartite graphs and the integers it can eventually be made arbitrarily close to optimal if defection rates are sufficiently small. On complete graphs the fraction of individuals performing each task is also closest to one half when there is no defection, but is bounded by a constant dependent on the relative costs of each task.
ContributorsArcuri, Alesandro Antonio (Author) / Lanchier, Nicolas (Thesis director) / Kang, Yun (Committee member) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133171-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.
ContributorsFreed, Rebecca (Co-author) / Snopko, Morgan (Co-author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137559-Thumbnail Image.png
Description
Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a

Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a binomial random variable. This analysis revisits Galams models from the point of view of the hypergeometric random variable by assuming the initial number of individuals in favor of an opinion is a fixed deterministic number. This assumption is more realistic, especially when analyzing small populations. Evolution of the models is based on majority rules, with a bias introduced when there is a tie. For the hier- archical voting system model, in order to derive the probability that opinion +1 would win, the analysis was done by reversing time and assuming that an individual in favor of opinion +1 wins. Then, working backwards we counted the number of configurations at the next lowest level that could induce each possible configuration at the level above, and continued this process until reaching the bottom level, i.e., the initial population. Using this method, we were able to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion, for any group size greater than or equal to three. For the public debate model, we counted the total number of individuals in favor of opinion +1 at each time step and used this variable to define a random walk. Then, we used first-step analysis to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion for group sizes of three. The spatial public debate model evolves based on the proportional rule. For the spatial model, the most natural graphical representation to construct the process results in a model that is not mathematically tractable. Thus, we defined a different graphical representation that is mathematically equivalent to the first graphical representation, but in this model it is possible to define a dual process that is mathematically tractable. Using this graphical representation we prove clustering in 1D and 2D and coexistence in higher dimensions following the same approach as for the voter model interacting particle system.
ContributorsTaylor, Nicole Robyn (Co-author) / Lanchier, Nicolas (Co-author, Thesis director) / Smith, Hal (Committee member) / Hurlbert, Glenn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133482-Thumbnail Image.png
Description
Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries

Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries with missing data. The new column is created to measure price difference to create a more accurate analysis on the change in price. Eight relevant variables are selected using cross validation: the total number of bitcoins, the total size of the blockchains, the hash rate, mining difficulty, revenue from mining, transaction fees, the cost of transactions and the estimated transaction volume. The in-sample data is modeled using a simple tree fit, first with one variable and then with eight. Using all eight variables, the in-sample model and data have a correlation of 0.6822657. The in-sample model is improved by first applying bootstrap aggregation (also known as bagging) to fit 400 decision trees to the in-sample data using one variable. Then the random forests technique is applied to the data using all eight variables. This results in a correlation between the model and data of 9.9443413. The random forests technique is then applied to an Ethereum dataset, resulting in a correlation of 9.6904798. Finally, an out-of-sample model is created for Bitcoin and Ethereum using random forests, with a benchmark correlation of 0.03 for financial data. The correlation between the training model and the testing data for Bitcoin was 0.06957639, while for Ethereum the correlation was -0.171125. In conclusion, it is confirmed that cryptocurrencies can have accurate in-sample models by applying the random forests method to a dataset. However, out-of-sample modeling is more difficult, but in some cases better than typical forms of financial data. It should also be noted that cryptocurrency data has similar properties to other related financial datasets, realizing future potential for system modeling for cryptocurrency within the financial world.
ContributorsBrowning, Jacob Christian (Author) / Meuth, Ryan (Thesis director) / Jones, Donald (Committee member) / McCulloch, Robert (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135086-Thumbnail Image.png
Description
We study two models of a competitive game in which players continuously receive points and wager them in one-on-one battles. In each model the loser of a battle has their points reset, while the points the winner receives is what sets the two models apart. In the knockout model the

We study two models of a competitive game in which players continuously receive points and wager them in one-on-one battles. In each model the loser of a battle has their points reset, while the points the winner receives is what sets the two models apart. In the knockout model the winner receives no new points, while in the winner-takes-all model the points that the loser had are added to the winner's total. Recurrence properties are assessed for both models: the knockout model is recurrent except for the all-zero state, and the winner-takes-all model is transient, but retains some aspect of recurrence. In addition, we study the population-level allocation of points; for the winner-takes-all model we show explicitly that the proportion of individuals having any number j of points, j=0,1,... approaches a stationary distribution that can be computed recursively. Graphs of numerical simulations are included to exemplify the results proved.
ContributorsVanKirk, Maxwell Joshua (Author) / Lanchier, Nicolas (Thesis director) / Foxall, Eric (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2016-12
137637-Thumbnail Image.png
Description
The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will it be possible for all dierences between individuals in a population comprised of neighbors to disappear ? There are many

The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will it be possible for all dierences between individuals in a population comprised of neighbors to disappear ? There are many mechanisms to approach this issue ; the Axelrod Model is one of them.
ContributorsYu, Yili (Author) / Lanchier, Nicolas (Thesis director) / Kang, Yun (Committee member) / Brooks, Dan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Finance (Contributor)
Created2013-05
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05