Matching Items (3)
Filtering by

Clear all filters

134774-Thumbnail Image.png
Description
Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were:

Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were: 1) to identify the CAM treatments that are being used to alleviate the side effects from oncological treatments and/or treat pediatric cancers; 2) to compare the subjective experience of CAM to Western biomedicine of cancer patients who leave comments on Group Loop, Cancer Compass and Cancer Forums, which are online support groups (N=20). I used grounded theory and situational mapping to analyze discussion threads. The participants identified using the following CAM treatments: herbs, imagery, prayer, stinging nettle, meditation, mind-body therapies and supplements. The participants turned to CAM treatments when their cancer was late-stage or terminal, often as an integrative and not exclusively to treat their cancer. CAM was more "effective" than biomedical oncology treatment at improving their overall quality of life and functionality. We found that youth on discussion boards did not discuss CAM treatments like the adult participants, but all participants visited these sites for support and verification of their cancer treatments. My main integration recommendation is to combine mind-body CAM therapies with biomedical treatment. This project fills the gap in literature that ignores the ideas of vulnerable populations by providing the experiences of adult and pediatric cancer patients, and that of their families. It is applicable to areas of the social studies of medicine, patient care, and families suffering from cancer. KEYWORDS: Cancer; Complementary and Alternative Medicine; Situational Analysis; Standpoint Feminism
ContributorsEsposito, Sydney Maria (Author) / Martinez, Airín (Thesis director) / Hruschka, Daniel (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134119-Thumbnail Image.png
Description
Chemotherapy refers to the use of chemical agents to inhibit or stop the growth of rapidly dividing cancer cells. There are many side effects of systemic chemotherapy, which are caused because the drug not only kills cancer cells but healthy cells as well (American Cancer Society, 2017). Common side effects

Chemotherapy refers to the use of chemical agents to inhibit or stop the growth of rapidly dividing cancer cells. There are many side effects of systemic chemotherapy, which are caused because the drug not only kills cancer cells but healthy cells as well (American Cancer Society, 2017). Common side effects include fatigue, hair loss, bruising/ bleeding, infection, anemia, nausea and vomiting, appetite changes, constipation, diarrhea, oral sores, nerve and muscle pain, dry skin and color change, kidney dysfunction, weight loss, cognitive difficulties, mood changes, sexual dysfunction, and fertility problems (American Cancer Society, 2017). Research shows that complementary and alternative medicine (CAM) may help relieve some of the side effects of chemotherapy. Examples of CAM include herbal medicine, dietary supplements, acupuncture, yoga, Tai Chi, massage, electromagnetic therapy, meditation, biofeedback, music, dance, and guided imagery (Johns Hopkins Medicine, 2017). The aim of this creative project was to design a third-party website to provide information to patients undergoing chemotherapy and their family members regarding the use of CAM for the treatment of chemotherapy-induced side effects. Rationale for this project stemmed from a preliminary research step. We analyzed and coded for presence or absence of CAM-specific information on the websites of 20 National Cancer Institute-designated comprehensive cancer centers across the United States. Fifty percent of websites were double-coded. Inter-rater reliabilities (kappa values) for coding of the presence or absence of specific CAM therapies ranged from 0.38 for acupuncture to 1.00 for exercise and yoga, expressive arts, and herbs (mean kappa = 0.75). Fourteen of the 20 websites mentioned meditation or mindfulness; 13 mentioned nutrition; 12 mentioned acupuncture; 11 mentioned exercise or yoga; 11 mentioned massage; 8 mentioned expressive arts; and 3 mentioned herbs. Frequencies for presence of either a description of the specific CAM therapy or an explanation of how the therapy works were lower. We then conducted a literature review using PUBMED to find peer-reviewed research on the efficacy of the previously described seven CAM therapies. The literature search focused on systematic reviews and meta-analyses published within the past 10 years. Based on the literature obtained, we created summaries of the scientific evidence for each CAM therapy. This information is now provided on our third-party website in tabular form with summative statements. The website describes in lay language: chemotherapy, chemotherapy side effects, CAM, seven specific CAM therapies, and evidence for the efficacy or lack thereof of each. Per the American Nurses Association (2015), it is our responsibility to advocate for our patients through education and holistic treatment. The role of the nurse is to educate the patient about treatment options; however, it is not within the nurse's scope of practice to prescribe a treatment. As such, this website should not be viewed as a prescription for CAM therapies, but instead as a user-friendly and easily accessible resource for informed decision-making regarding the adjunctive use of CAM therapies.
Created2017-12
134826-Thumbnail Image.png
Description
As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of

As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of DNA-nanostructures, a DNA tetrahedron nanostructure was explored as a drug carrier. The nanostructure can be decorated with various molecules to either increase immunogenicity, toxicity, or affinity to a specific cell type. The efficiency of the specific binding and internalization of the chosen molecules was measured via flow cytometry. Using a murine B cell lymphoma as the model system, several targeting molecules have been evaluated for their specific binding and induced internalization of DNA nanostructures, including an anti-Igκ antibody, an idiotype-binding peptide, and a g-quadruplex nucleolin specific aptamer. It was found that adding the anti-Igκ antibody appeared to provide increased binding and facilitated cellular internalization. Also, it was found that the presence of CpG appeared to aid in the binding of nanostructures decorated with other molecules, as compared to nanostructures without CpG. The g-quadruplex aptamer thought to specifically bind cancer cells that overexpress nucleolin was tested and found to have better binding to cells when linked to the nanostructure than when alone. The drug doxorubicin was used to load the DNA-nanostructure and attempt to inhibit cancer cell growth. The DNA-nanostructure has the benefit of being self-assembled and customizable, and it has been shown to bind to and internalize into a cancer cell line. The next steps are to test the toxicity of the nanostructure as well as its specificity for cancerous cells compared to noncancerous cells. Furthermore, once those tests are completed the structure’s drug delivery capacity will be tested in tumor bearing mice. The DNA-nanostructure exhibits potential as a cancer specific therapeutic.
ContributorsGomez, Amber Marie (Author) / Chang, Yung (Thesis director) / Anderson, Karen (Committee member) / Liu, Xiaowei (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12