Matching Items (18)
Filtering by

Clear all filters

134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133171-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.
ContributorsFreed, Rebecca (Co-author) / Snopko, Morgan (Co-author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134774-Thumbnail Image.png
Description
Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were:

Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were: 1) to identify the CAM treatments that are being used to alleviate the side effects from oncological treatments and/or treat pediatric cancers; 2) to compare the subjective experience of CAM to Western biomedicine of cancer patients who leave comments on Group Loop, Cancer Compass and Cancer Forums, which are online support groups (N=20). I used grounded theory and situational mapping to analyze discussion threads. The participants identified using the following CAM treatments: herbs, imagery, prayer, stinging nettle, meditation, mind-body therapies and supplements. The participants turned to CAM treatments when their cancer was late-stage or terminal, often as an integrative and not exclusively to treat their cancer. CAM was more "effective" than biomedical oncology treatment at improving their overall quality of life and functionality. We found that youth on discussion boards did not discuss CAM treatments like the adult participants, but all participants visited these sites for support and verification of their cancer treatments. My main integration recommendation is to combine mind-body CAM therapies with biomedical treatment. This project fills the gap in literature that ignores the ideas of vulnerable populations by providing the experiences of adult and pediatric cancer patients, and that of their families. It is applicable to areas of the social studies of medicine, patient care, and families suffering from cancer. KEYWORDS: Cancer; Complementary and Alternative Medicine; Situational Analysis; Standpoint Feminism
ContributorsEsposito, Sydney Maria (Author) / Martinez, Airín (Thesis director) / Hruschka, Daniel (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134596-Thumbnail Image.png
Description
Cancer rates in our nearest relatives are largely unknown. Comparison of human cancer rates with other primates should help us to understand the nature of our susceptibilities to cancer. Data from deceased primates was gathered from 3 institutions, the Duke Lemur Center, San Diego Zoo, and Jungle Friends primate sanctuary.

Cancer rates in our nearest relatives are largely unknown. Comparison of human cancer rates with other primates should help us to understand the nature of our susceptibilities to cancer. Data from deceased primates was gathered from 3 institutions, the Duke Lemur Center, San Diego Zoo, and Jungle Friends primate sanctuary. This data contained over 400 unique individuals across 45 species with information on cancer incidence and mortality. Cancer incidence ranged from 0-71% and cancer mortality ranged from 0-67%. We used weighted phylogenetic regressions to test for an association between life history variables (specifically body mass and lifespan) and cancer incidence as well as mortality. Cancer incidence did not correlate with both body mass and lifespan (p>.05) however, cancer mortality did (p<.05). However, it is uncertain if the variables can be used as reliable predictors of cancer, because the data come from different organizations. This analysis presents cancer incidence rates and cancer mortality rates in species where it was previously unknown, and in some primate species, is surprisingly high. Microcebus murinus(grey mouse lemur) appear to be particularly vulnerable to cancer, mostly lymphomas. Further studies will be required to determine the causes of these vulnerabilities.
ContributorsWalker, William Charles (Author) / Maley, Carlo (Thesis director) / Boddy, Amy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134943-Thumbnail Image.png
Description
Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.
ContributorsMillea, Timothy Michael (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148450-Thumbnail Image.png
Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

ContributorsConti, Aviona (Author) / Maley, Carlo (Thesis director) / Blattman, Joseph (Committee member) / Seyedi, Sareh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05