Matching Items (78)
Filtering by

Clear all filters

134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136562-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the mechanisms that govern NSCLC cell invasion and therapeutic resistance, and to target these phenotypes towards abating the dismal five-year survival of NSCLC. The expression of the tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A; Fn14) correlates with poor patient survival and invasiveness in many tumor types including NSCLC. We hypothesize that suppression of Fn14 will inhibit NSCLC cell motility and reduce cell viability. Here we demonstrate that atorvastatin calcium treatment reduces Fn14 expression in NSCLC cell lines. Prior to Fn14 protein suppression, atorvastatin calcium modulated the expression of the Fn14 modulators P-ERK1/2 and P-NF-κβ. Atorvastatin calcium treatment inhibited the migratory capacity in H1975, H2030 and H1993 cells by at least 55%. When chemotactic migration in H2030 cells was induced by the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK) treatment, atorvastatin calcium successfully negated any stimulatory effects. Inversely, treatment of NSCLC cells with cholesterol resulted in a statistically significant increase in migration. Depletion of Fn14 expression via siRNA suppressed the migratory effect of cholesterol. Finally, atorvastatin calcium treatment sensitized cells to radiation treatment, reducing cell survival. These data suggest that atorvastatin calcium may inhibit NSCLC invasiveness through a mechanism involving Fn14, and may be a novel therapeutic target in NSCLC tumors expressing Fn14.
ContributorsCornes, Victoria Elisabeth (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136242-Thumbnail Image.png
Description
The transition from high school to college is, for many, a drastic change in lifestyle, social networks, and dietary choices. The prevalence of obesity in college students has been steadily increasing. Freshmen weight gains have been associated with a decrease in fruits and vegetables and an increase in unhealthy items

The transition from high school to college is, for many, a drastic change in lifestyle, social networks, and dietary choices. The prevalence of obesity in college students has been steadily increasing. Freshmen weight gains have been associated with a decrease in fruits and vegetables and an increase in unhealthy items such as desserts, alcohol, and late night snacking after dinner. A survey of college students was constructed to gauge students' perceptions of nutrition how these perceptions influenced dietary practices and behaviors. Survey results indicated that awareness of nutrition and health does not translate to dietary practices, aligning with results from previous studies. Several sex differences were noted in regards to dietary choices and perceptions, knowledge seeking behavior, and sources of information. While there were some similarities, it is clear from the results obtained that men and women have different approaches and thoughts with regard to nutrition. The results showed that college students who actively seek our nutritional information are more likely to do so in the form of social media or Internet sources. This study could be useful for those planning on conducting college-based nutritional programs in that the results indicate patterns and trends that should be taken into consideration in order for a successful nutrition intervention
ContributorsKeahon, Gabriela Estrada (Author) / Jehn, Megan (Thesis director) / Williams, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05
132442-Thumbnail Image.png
Description
Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer,

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis director) / Mason, Hugh (Committee member) / Hariadi, Hugh (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137222-Thumbnail Image.png
Description
The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is

The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is found to have high variability across populations. Two single nucleotide polymorphisms (SNPs) at the human beta globin gene cluster, rs7482144 and rs10128556, contribute to the heritable variation in HbF levels and are associated with increased HbF concentrations in adults. A sample population of NCAA football student athletes was genotyped for these two polymorphisms, and their allele frequencies were compared to those of other populations. The minor allele of both polymorphisms had allele frequencies of 0.091 in the sample population, which compared closely with other populations of recent African heritage but was significantly different from European populations. The results of this study will be included in a larger study to predict whether these among other polymorphisms can be used as markers to predict susceptibility to heat-related emergencies in NCAA student athletes with SCT, although the small sample size will delay this process until participation in the study increases. Since both rs7482144 and rs10128556 exhibit high levels of linkage disequilibrium, and as their contributions to the heritable variability of HbF concentrations tend to differ greatly between populations of different ancestry, further investigations should be aimed at distinguishing between the effects of each SNP in African American, European, and other populations represented in NCAA football before conclusions can be drawn as to their practical use as genetic markers of heat susceptibility in student athletes with SCT.
ContributorsGrieger, Ryan Wayne (Author) / Stone, Anne C. (Thesis director) / Rosenberg, Michael (Committee member) / Madrigal, Lorena (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136890-Thumbnail Image.png
Description
Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and

Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and crucial stocks of natural resources. Terrestrial cultivation encroaches on natural habitats and consumes resources inefficiently, while overfishing has greatly depleted wild fishery stocks. These environmental factors, along with concerns about nutrients, contaminants and the ethics of animal protein has led to confusion about weighing the risks and benefits associated with alternative sources of protein. Providing consumers \u2014 and policy makers \u2014 with a comprehensive account of major protein sources and their impacts in an understandable form is crucial to reducing environmental degradation and improving human health. Here I provide a general framework to compare the health and environmental impacts of livestock, seafood, and plant protein, and illustrate the application of this framework with case studies for each of these categories.
ContributorsGeren, Sarah Lindsey (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
135241-Thumbnail Image.png
Description
Tai Chi Chuan is an internal Chinese martial arts that practitioners believe provide will provide health benefits. This thesis attempts to summarize and analyze scientific studies that test Tai Chi Chuan as a therapeutic exercise. Systemic reviews and meta-analysis were included were based on the following criteria: studied Tai Chi

Tai Chi Chuan is an internal Chinese martial arts that practitioners believe provide will provide health benefits. This thesis attempts to summarize and analyze scientific studies that test Tai Chi Chuan as a therapeutic exercise. Systemic reviews and meta-analysis were included were based on the following criteria: studied Tai Chi Chuan in context of a specific disease, must include random control trials, and statistical analysis. Overall, Tai Chi Chuan studies portray the martial art as a low intensity exercise with numerous health benefits in pain management, emotional health, fall prevention, cardiopulmonary and cognitive function.
ContributorsTsai, Andrew Roy (Author) / Capco, David (Thesis director) / Tillman, Hoyt (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05