Matching Items (4)
Filtering by

Clear all filters

155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
Description
The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are

The regulation of gene expression, timing, location, and amount of a given project, ultimately affects the cellular structure and function. More broadly, gene regulation is the basis for cellular differentiation and development. However, gene expression is not uniform among individuals and varies greatly between genetic males and females. Males are hemizygous for the X chromosome, whereas females have two X chromosome copies. Contributing to the sex differences in gene expression between males and females are the sex chromosomes, X and Y. Gene expression differences on the autosomes and the X chromosome between males (46, XY) and females (46, XX) may help inform on the mechanisms of sex differences in human health and disease. For example, XX females are more likely to suffer from autoimmune diseases, and genetic XY males are more likely to develop cancer. Characterizing sex-specific gene expression among human tissues will help inform the molecular mechanisms driving sex differences in human health and disease. This dissertation covers a range of critical aspects in gene expression. In chapter 1, I will introduce a method to align RNA-Seq reads to a sex chromosome complement informed reference genome that considers the X and Y chromosomes' shared evolutionary history. Using this approach, I show that more genes are called as sex differentially expressed in several human adult tissues compared to a default reference alignment. In chapter 2, I characterize gene expression in an early formed tissue, the human placenta. The placenta is the DNA of the developing fetus and is typically XY male or XX female. There are well-documented sex differences in pregnancy complications, yet, surprisingly, there is no observable sex difference in expression of innate immune genes, suggesting expression of these genes is conserved. In chapter 3, I investigate gene expression in breast cancer cell lines. Cancer arises in part due to the disruption of gene expression. Here I show 19 tumor suppressor genes become upregulated in response to a synthetic protein treatment. In chapter 4, I discuss gene and allele-specific expression in Nasonia jewel wasp. Chapter 4 is a replication and extension study and discusses the importance of reproducibility.
ContributorsOlney, Kimberly (Author) / Wilson, Melissa A (Thesis advisor) / Hinde, Katherine (Committee member) / Buetow, Kenneth (Committee member) / Banovich, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
161205-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high-fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsSayegh, Jonathan (Author) / Garavito, Jorge (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2021-12
161071-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsGaravito, Jorge (Author) / Sayegh, Jonathan (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2021-12