Matching Items (12)
Filtering by

Clear all filters

131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
137020-Thumbnail Image.png
Description
In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this

In many systems, it is difficult or impossible to measure the phase of a signal. Direct recovery from magnitude is an ill-posed problem. Nevertheless, with a sufficiently large set of magnitude measurements, it is often possible to reconstruct the original signal using algorithms that implicitly impose regularization conditions on this ill-posed problem. Two such algorithms were examined: alternating projections, utilizing iterative Fourier transforms with manipulations performed in each domain on every iteration, and phase lifting, converting the problem to that of trace minimization, allowing for the use of convex optimization algorithms to perform the signal recovery. These recovery algorithms were compared on a basis of robustness as a function of signal-to-noise ratio. A second problem examined was that of unimodular polyphase radar waveform design. Under a finite signal energy constraint, the maximal energy return of a scene operator is obtained by transmitting the eigenvector of the scene Gramian associated with the largest eigenvalue. It is shown that if instead the problem is considered under a power constraint, a unimodular signal can be constructed starting from such an eigenvector that will have a greater return.
ContributorsJones, Scott Robert (Author) / Cochran, Douglas (Thesis director) / Diaz, Rodolfo (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137081-Thumbnail Image.png
Description
Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK)

Passive radar can be used to reduce the demand for radio frequency spectrum bandwidth. This paper will explain how a MATLAB simulation tool was developed to analyze the feasibility of using passive radar with digitally modulated communication signals. The first stage of the simulation creates a binary phase-shift keying (BPSK) signal, quadrature phase-shift keying (QPSK) signal, or digital terrestrial television (DTTV) signal. A scenario is then created using user defined parameters that simulates reception of the original signal on two different channels, a reference channel and a surveillance channel. The signal on the surveillance channel is delayed and Doppler shifted according to a point target scattering profile. An ambiguity function detector is implemented to identify the time delays and Doppler shifts associated with reflections off of the targets created. The results of an example are included in this report to demonstrate the simulation capabilities.
ContributorsScarborough, Gillian Donnelly (Author) / Cochran, Douglas (Thesis director) / Berisha, Visar (Committee member) / Wang, Chao (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
135798-Thumbnail Image.png
Description
The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.
ContributorsZia, Jonathan Sargon (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Adler, Charles (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite and (ii) optical images for the same area as the SAR images collected from the Sentinel-2 satellite. We utilize classical neural networks to classify four classes of images. We then use Quantum Convolutional Neural Networks and deep learning techniques to take advantage of machine learning to help the system train, learn, and identify at a higher classification accuracy. A hybrid Quantum-classical model that is trained on the Sentinel1-2 dataset is proposed, and the performance is then compared against the classical in terms of classification accuracy.

ContributorsMiller, Leslie (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
132777-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsLee, Byeong Mok (Co-author) / Xi, Andrew Jinchi (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Baumann, Alicia (Committee member) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132785-Thumbnail Image.png
Description
The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.
ContributorsXi, Andrew Jinchi (Co-author) / Lee, Matthew Byeongmok (Co-author) / Groppi, Christopher (Thesis director) / Mauskopf, Philip (Committee member) / Cochran, Douglas (Committee member) / Baumann, Alicia (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164815-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsGin, Taylor (Author) / McCarthy, Alexandra (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05