Matching Items (5)
Filtering by

Clear all filters

157388-Thumbnail Image.png
Description
Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools

Many individual-level behavioral interventions improve health and well-being. However, most interventions exhibit considerable heterogeneity in response. Put differently, what might be effective on average might not be effective for specific individuals. From an individual’s perspective, many healthy behaviors exist that seem to have a positive impact. However, few existing tools support people in identifying interventions that work for them, personally.

One approach to support such personalization is via self-experimentation using single-case designs. ‘Hack Your Health’ is a tool that guides individuals through an 18-day self-experiment to test if an intervention they choose (e.g., meditation, gratitude journaling) improves their own psychological well-being (e.g., stress, happiness), whether it fits in their routine, and whether they enjoy it.

The purpose of this work was to conduct a formative evaluation of Hack Your Health to examine user burden, adherence, and to evaluate its usefulness in supporting decision-making about a health intervention. A mixed-methods approach was used, and two versions of the tool were tested via two waves of participants (Wave 1, N=20; Wave 2, N=8). Participants completed their self-experiments and provided feedback via follow-up surveys (n=26) and interviews (n=20).

Findings indicated that the tool had high usability and low burden overall. Average survey completion rate was 91%, and compliance to protocol was 72%. Overall, participants found the experience useful to test if their chosen intervention helped them. However, there were discrepancies between participants’ intuition about intervention effect and results from analyses. Participants often relied on intuition/lived experience over results for decision-making. This suggested that the usefulness of Hack Your Health in its current form might be through the structure, accountability, and means for self-reflection it provided rather than the specific experimental design/results. Additionally, situations where performing interventions within a rigorous/restrictive experimental set-up may not be appropriate (e.g., when goal is to assess intervention enjoyment) were uncovered. Plausible design implications include: longer experimental and phase durations, accounting for non-compliance, missingness, and proximal/acute effects, and exploring strategies to complement quantitative data with participants’ lived experiences with interventions to effectively support decision-making. Future work should explore ways to balance scientific rigor with participants’ needs for such decision-making.
ContributorsPhatak, Sayali Shekhar (Author) / Buman, Matthew P (Thesis advisor) / Hekler, Eric B. (Committee member) / Huberty, Jennifer L (Committee member) / Johnston, Erik W., 1977- (Committee member) / Swan, Pamela D (Committee member) / Arizona State University (Publisher)
Created2019
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135798-Thumbnail Image.png
Description
The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.
ContributorsZia, Jonathan Sargon (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Adler, Charles (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164815-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsGin, Taylor (Author) / McCarthy, Alexandra (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
164816-Thumbnail Image.png
Description

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict

This paper serves to report the research performed towards detecting PD and the effects of medication through the use of machine learning and finger tapping data collected through mobile devices. The primary objective for this research is to prototype a PD classification model and a medication classification model that predict the following: the individual’s disease status and the medication intake time relative to performing the finger-tapping activity, respectively.

ContributorsMcCarthy, Alexandra (Author) / Gin, Taylor (Co-author) / Berisha, Visar (Thesis director) / Baumann, Alicia (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05