Matching Items (5)
Filtering by

Clear all filters

135386-Thumbnail Image.png
Description
Parkinson's disease is a neurodegenerative disorder in the central nervous system that affects a host of daily activities and involves a variety of symptoms; these include tremors, slurred speech, and rigid muscles. It is the second most common movement disorder globally. In Stage 3 of Parkinson's, afflicted individuals begin to

Parkinson's disease is a neurodegenerative disorder in the central nervous system that affects a host of daily activities and involves a variety of symptoms; these include tremors, slurred speech, and rigid muscles. It is the second most common movement disorder globally. In Stage 3 of Parkinson's, afflicted individuals begin to develop an abnormal gait pattern known as freezing of gait (FoG), which is characterized by decreased step length, shuffling, and eventually complete loss of movement; they are unable to move, and often results in a fall. Surface electromyography (sEMG) is a diagnostic tool to measure electrical activity in the muscles to assess overall muscle function. Most conventional EMG systems, however, are bulky, tethered to a single location, expensive, and primarily used in a lab or clinical setting. This project explores an affordable, open-source, and portable platform called Open Brain-Computer Interface (OpenBCI). The purpose of the proposed device is to detect gait patterns by leveraging the surface electromyography (EMG) signals from the OpenBCI and to help a patient overcome an episode using haptic feedback mechanisms. Previously designed devices with similar intended purposes utilize accelerometry as a method of detection as well as audio and visual feedback mechanisms in their design.
ContributorsAnantuni, Lekha (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
133186-Thumbnail Image.png
Description
Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic

Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic events, chapter meetings, rituals, recruitment events, etc. often reflects the state of the organization. The purpose of this project is to create a web application that allows members of an Arizona State University sorority to view their involvement activity as outlined by the chapter. Maintaining the balance between academics, sleep, a social life, and extra-curricular activities/organizations can be difficult for college students. With the use of this website, members can view their attendances, absences, and study/volunteer hours to know their progress towards the involvement requirements set by the chapter. This knowledge makes it easier to plan schedules and alleviate some stress associated with the time-management of sorority events, assignments/homework, and studying. It is also designed for the sorority leadership to analyze and track the participation of the membership. Members can submit their participation in events, making the need for manual counting and calculations disappear. The website administrator(s) can view and approve data from any and all members. The website was developed using HTML, CSS, and JavaScript in conjunction with Firebase for the back-end database. Human-Computer Interaction (HCI) tools and techniques were used throughout the development process to aide in prototyping, visual design, and evaluation. The front-end appearance of the website was designed to mimic the data manipulation used in the current involvement tracking system while presenting it in a more personalized and aesthetically pleasing manner.
ContributorsKolker, Madysen (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133291-Thumbnail Image.png
DescriptionFresh15 is an iOS application geared towards helping college students eat healthier. This is based on a user's preferences of price range, food restrictions, and favorite ingredients. Our application also considers the fact that students may have to order their ingredients online since they don't have access to transportation.
ContributorsBailey, Reece (Co-author) / Fallah-Adl, Sarah (Co-author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135798-Thumbnail Image.png
Description
The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of

The artificial neural network is a form of machine learning that is highly effective at recognizing patterns in large, noise-filled datasets. Possessing these attributes uniquely qualifies the neural network as a mathematical basis for adaptability in personal biomedical devices. The purpose of this study was to determine the viability of neural networks in predicting Freezing of Gait (FoG), a symptom of Parkinson's disease in which the patient's legs are suddenly rendered unable to move. More specifically, a class of neural networks known as layered recurrent networks (LRNs) was applied to an open- source FoG experimental dataset donated to the Machine Learning Repository of the University of California at Irvine. The independent variables in this experiment \u2014 the subject being tested, neural network architecture, and sampling of the majority classes \u2014 were each varied and compared against the performance of the neural network in predicting future FoG events. It was determined that single-layered recurrent networks are a viable method of predicting FoG events given the volume of the training data available, though results varied significantly between different patients. For the three patients tested, shank acceleration data was used to train networks with peak precision/recall values of 41.88%/47.12%, 89.05%/29.60%, and 57.19%/27.39% respectively. These values were obtained for networks optimized using detection theory rather than optimized for desired values of precision and recall. Furthermore, due to the nature of the experiments performed in this study, these values are representative of the lower-bound performance of layered recurrent networks trained to detect gait freezing. As such, these values may be improved through a variety of measures.
ContributorsZia, Jonathan Sargon (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Adler, Charles (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05