Matching Items (3)
Filtering by

Clear all filters

153350-Thumbnail Image.png
Description
Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure and function in young male Sprague-Dawley rats. Previous studies have shown that these animals develop indices of diabetes compared to rats fed a standard rodent chow (5% fat) for six weeks. The hypothesis of this study is that six weeks of HFD will lead to early stages of kidney disease as evidenced by morphological and functional changes in the kidney. Alterations in morphology were determined by measuring structural changes in the kidneys (changes in mass, fatty acid infiltration, and structural damage). Alterations in kidney function were measured by analyzing urinary biomarkers of oxidative RNA/DNA damage, renal tissue lipid peroxidation, urinary markers of impaired kidney function (urinary protein, creatinine, and hydrogen peroxide (H2O2)), markers of inflammation (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)), as well as cystatin C, a plasma biomarker of kidney function. The results of these studies determined that short term HFD intake is not sufficient to induce early stage kidney disease. Beyond increases in renal mass, there were no significant differences between the markers of renal structure and function in the HFD and standard rodent chow-fed rats.
ContributorsCrinigan, Catherine (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
136226-Thumbnail Image.png
Description
Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that

Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that diets with no meat consumption (pesco-vegetarian and lacto-vegetarian) would reduce protein glycation, in comparison to a diet with meat. Forty six healthy adult omnivorous subjects were randomized into one of three groups and instructed to either consume red meat (i.e. meat) or poultry twice per day (control), eliminate meat and increase fish consumption (pesco-vegetarian), or adopt a vegetarian diet devoid of fish, meat or poultry (lacto-vegetarian) for four weeks. Fasting plasma samples were collected from participants at baseline and after 4 weeks of the dietary intervention. Plasma glucose concentrations were measured using a commercially available kit. Percent glycated albumin was measured on a separate aliquot of plasma by mass spectrometry. Plasma glucose concentrations were significantly increased following 4-weeks of pesco-vegetarian diet (P=0.002, paired t-test). Neither the lacto-vegetarian (P=0.898) or the control diet (P=0.233) affected plasma glucose concentrations. Despite the significant increase in plasma glucose following a pesco-vegetarian diet, no change in percent glycated albumin was observed (P>0.50, ANOVA). These findings may indicate a protective effect of the pesco-vegetarian diet on protein glycation in the presence of elevated plasma glucose and suggest the need for additional studies to examine the link between increased fish consumption and glucose regulation.
ContributorsRaad, Noor (Author) / Sweazea, Karen (Thesis director, Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05