Matching Items (26)
Filtering by

Clear all filters

136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136487-Thumbnail Image.png
Description
Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative

Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative robots, robots which directly interact with patients, and the use of exoskeleton-based systems of rehabilitation. While there is great promise in both of these techniques, they currently lack sufficient efficacy to objectively justify their costs. The overall efficacy to both of these techniques is about the same as conventional therapy, yet each has higher overhead costs that conventional therapy does. However there are associated long-term cost savings in each case, meaning that the actual current viability of either of these techniques is somewhat nebulous. In both cases, the problems which decrease technique viability are largely related to joint action, the interaction between robot and human in completing specific tasks, and issues in robot adaptability that make joint action difficult. As such, the largest part of current research into rehabilitative robotics aims to make robots behave in more "human-like" manners or to bypass the joint action problem entirely.
ContributorsRamakrishna, Vijay Kambhampati (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133398-Thumbnail Image.png
Description
Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic

Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic feedback from the stump-socket interface. Unfortunately, this is not an adequate substitute. Areas of the stump that directly interface with the socket are also prone to painful irritation, which further degrades haptic feedback. The lack of somatosensory feedback from prosthetic legs causes several problems for lower-limb amputees. Previous studies have established that the lack of adequate sensory feedback from prosthetic limbs contributes to poor balance and abnormal gait kinematics. These improper gait kinematics can, in turn, lead to the development of musculoskeletal diseases. Finally, the absence of sensory information has been shown to lead to steeper learning curves and increased rehabilitation times, which hampers amputees from recovering from the trauma. In this study, a novel haptic feedback system for lower-limb amputees was develped, and studies were performed to verify that information presented was sufficiently accurate and precise in comparison to a Bertec 4060-NC force plate. The prototype device consisted of a sensorized insole, a belt-mounted microcontroller, and a linear array of four vibrotactile motors worn on the thigh. The prototype worked by calculating the center of pressure in the anteroposterior plane, and applying a time-discrete vibrotactile stimulus based on the location of the center of pressure.
ContributorsKaplan, Gabriel Benjamin (Author) / Abbas, James (Thesis director) / McDaniel, Troy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133624-Thumbnail Image.png
Description
This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical

This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical therapist to represent an exercise session involving the user's hand and finger joints as a series of patterns. Fine motor rehabilitation plays an important role in the recovery and improvement of the effects of stroke, Parkinson's disease, multiple sclerosis, and more. Individuals with these conditions possess a wide range of impairment in terms of fine motor movement. The serious game developed takes this into account and is designed to work with individuals with different levels of impairment. In a pilot study, under partnership with South West Advanced Neurological Rehabilitation (SWAN Rehab) in Phoenix, Arizona, we compared the performance of individuals with fine motor impairment to individuals without this impairment to determine whether a human-centered approach and adapting to an user's range of motion can allow an individual with fine motor impairment to perform at a similar level as a non-impaired user.
ContributorsShah, Vatsal Nimishkumar (Author) / McDaniel, Troy (Thesis director) / Tadayon, Ramin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133975-Thumbnail Image.png
Description
The author examines drug court as a means to reduce recidivism rates for individuals who are addicted to illegal substances. The thesis analyzes the best practices for drug courts in treating addiction and lowering recidivism. In conducting this analysis, the author focuses on the Yuma County Drug Court Program (YCDC).

The author examines drug court as a means to reduce recidivism rates for individuals who are addicted to illegal substances. The thesis analyzes the best practices for drug courts in treating addiction and lowering recidivism. In conducting this analysis, the author focuses on the Yuma County Drug Court Program (YCDC). After discussing the major components of the YCDC program, the author reaches several conclusions about the program. The author's conclusions are based in part on a study analyzing the recidivism rates for individuals who participated in YCDC from January 1, 2007 through December 31, 2010. The author concludes that an effective drug court program requires proper screening and assessment using validated assessment tools that ensure delivery of treatment to individuals with high substance abuse treatment needs. In addition, drug courts must include counseling in both sober individual and group settings, cognitive restructuring, life skills training, and frequent interaction with the drug court judge. The author also concludes that drug courts are more successful when they stress accountability and independence by requiring participants to maintain a stable residence and employment. In YCDC these practices lead to 48.4% of individuals participating in the 18-month program having no criminal justice involvement for a period of three years after their exit from the program. Other important outcomes showed that well over 90% of the participants' drug tests were negative and 87% of the participants were employed. The author concludes that the YCDC program provides a good model for drug courts seeking to lower recidivism.
ContributorsGould, Anna Elaine (Author) / Chisum, Jack (Thesis director) / Carr, Natasha (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134988-Thumbnail Image.png
Description
The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered

The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered exoskeletons have the potential to be used directly in physical therapy or indirectly in research pursuing more effective rehabilitation methods. This paper presents the LiTREAD, a lightweight three degree-of-freedom robotic exoskeletal ankle device. This novel robotic system is designed to be worn on a user's leg and actuate the foot position during treadmill studies. The robot's sagittal plane actuation is complemented by passive virtual axis systems in the frontal and transverse planes. Together, these degrees of freedom allow the device to approximate the full range of motion of the ankle. The virtual axis mechanisms feature locking configurations that will allow the effect of these degrees of freedom on gait dynamics to be studied. Based on a kinematic analysis of the robot's actuation and geometry, it is expected to meet and exceed its torque and speed targets, respectively. The device will fit either leg of a range of subject sizes, and is expected to weigh just 1.3 kg (2.9 lb.). These features and characteristics are designed to minimize the robot's interference with the natural walking motion. Pending validation studies confirming that all design criteria have been met, the LiTREAD prototype that has been constructed will be utilized in various experiments investigating properties of the ankle such as its mechanical impedance. It is hoped that the LiTREAD will yield valuable data that will expand our knowledge of the ankle and aid in the design of future lower-extremity devices.
ContributorsCook, Andrew James Henry (Author) / Lee, Hyunglae (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147950-Thumbnail Image.png
Description

The privatization of prisons within Arizona has been a hot button issue and needs to be further analyzed to determine their benefits and expenses. To begin this investigation into the effectiveness of private prisons within Arizona and possible steps that need to be taken for its rehabilitation certain definitions and

The privatization of prisons within Arizona has been a hot button issue and needs to be further analyzed to determine their benefits and expenses. To begin this investigation into the effectiveness of private prisons within Arizona and possible steps that need to be taken for its rehabilitation certain definitions and prior research need to be understood. Following this explanation, areas such as costs analysis across different types of prisons, liability rates across differing types of prison guards, and the differing psychology of different types of prisons can be examined to gain an overall assessment of the current performance of privatized prisons within Arizona. After this in-depth analysis of the current private prison system within Arizona, the flaws of the system will become abundantly clear and the solutions that should be implemented to alleviate these problems will be discussed.

ContributorsPeters, Grayson Allen (Author) / Rigoni, Adam (Thesis director) / Schuh, Carl (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

While children and adolescents are the most vulnerable members of society, juvenile offenders face interventions that mirror the punitive and retributive nature of the criminal justice system. These interventions contribute to high recidivism rates, disproportionately impact low-income and minority youth, and result in negative collateral consequences, preventing effective reintegration into

While children and adolescents are the most vulnerable members of society, juvenile offenders face interventions that mirror the punitive and retributive nature of the criminal justice system. These interventions contribute to high recidivism rates, disproportionately impact low-income and minority youth, and result in negative collateral consequences, preventing effective reintegration into their communities. In this thesis, I devise a system based on decriminalization and sociologically-focused rehabilitation that should be applied to the Arizona juvenile justice system and beyond.

ContributorsKallmeyer, Olivia (Author) / Sweeten, Gary (Thesis director) / Wheatley, Abby (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Civic & Economic Thought and Leadership (Contributor)
Created2023-05
Description

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning.

Neuromodulation is an emerging field of research that has a proven therapeutic benefit on a number of neurological disorders, including epilepsy and stroke. It is characterized by using exogenous stimulation to modify neural activity. Prior studies have shown the positive effect of non-invasive trigeminal nerve stimulation (TNS) on motor learning. However, few studies have explored the effect of this specific neuromodulatory method on the underlying physiological processes, including heart rate variability (HRV), facial skin temperatures, skin conductance level, and respiratory rate. Here we present preliminary results of the effects of 3kHz supraorbital TNS on HRV using non-linear (Poincaré plot descriptors) and time-domain (SDNN) measures of analysis. Twenty-one (21) healthy adult subjects were randomly assigned to 2 groups: 3kHz Active stimulation (n=11) and Sham (n=10). Participants’ physiological markers were monitored continuously across three blocks: one ten-minute baseline block, one twenty-minute treatment block, and one ten-minute recovery block. TNS targeting the ophthalmic branches of the trigeminal nerve was delivered during the treatment block for twenty minutes in 30 sec. ON/OFF cycles. The active stimulation group exhibited larger values of all Poincaré descriptors and SDNN during blocks two and three, signifying increased HRV and autonomic nervous system activity.

ContributorsParmar, Romir (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05