Matching Items (9)
Filtering by

Clear all filters

133053-Thumbnail Image.png
Description
A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed

A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed carbon electrode, the necessary amount of glucose oxidase was determined to be 10 mg/mL. Binding time trials ranging from 1-3 minutes demonstrated that 1.5 minutes was the optimal binding time. This timeframe produced the strongest impedance response at each glucose concentration. Using this enzyme concentration and binding time, the native OBF of the biosensor was found to be 1.18 Hz using vector analysis. Temperature testing showed little change in OBF in sensors exposed to 4 \u00B0C through 43.3 \u00B0C. Only exposure to 60 \u00B0C resulted in rapid OBF change which was likely due to glucose oxidase becoming denatured. Humidity tests showed little change in OBF and sensor performance between sensors prepared at the humidities of 7.5%, 10.625% and 16.5% humidity. Alternatively, solutions containing common interference molecules such as uric acid, acetaminophen, and ascorbic acid resulted in a highly shifted OBF and drastically reduced signal.
ContributorsMatloff, Daniel (Co-author) / Khanwalker, Mukund (Co-author) / Johns, Jared (Co-author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Lin, Chi (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148229-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsNumani, Asfia (Co-author) / Mishra, Shambhavi (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Patients with type 2 diabetes mellitus experience a slower healing process and poor osteointegration, making it difficult for them to heal properly after a bone fracture. This study aims to compare the proliferation and differentiation of human mesenchymal stromal cells at different glucose concentrations, as well as with an advanced

Patients with type 2 diabetes mellitus experience a slower healing process and poor osteointegration, making it difficult for them to heal properly after a bone fracture. This study aims to compare the proliferation and differentiation of human mesenchymal stromal cells at different glucose concentrations, as well as with an advanced glycated end-product (AGE) concentration, to mimic a healthy, prediabetic, and diabetic environment in an in vitro model over several experiments. Each experiment was composed of treatment groups in either growth or osteogenic media, with varying levels of glucose concentration or an advanced glycated end-product concentration. The treatment groups were cultured in 24 well plates over 28 days with staining of FITC-maleimide, DAPI, or alkaline phosphatase conducted at varying time points. The plates were imaged, then analyzed in ImageJ and GraphPad Prism. The study supports that at 28 days in culture, the more glucose added to osteogenic media treatment groups, the lower the nuclear count. At 14 days the same is true of growth media treatment groups, though the trend does not persist until 28 days. It does not seem that cell surface area of osteogenic groups, and growth media treatment groups was affected by glucose level. At 14 days, the alkaline phosphatase expression was unaffected by glucose level. However, at the 28 day time point the higher the glucose level of osteogenic treatment groups, the less expression of alkaline phosphatase. The effect of the added AGE concentration on hMSC osteogenesis was inconclusive. Overall, this study enhanced understanding of the role that glucose and AGEs play in the bone healing process for diabetic patients, allowing for future improvements of biomaterials and engineered tissue.
ContributorsMoya, Adriana Allyssa (Author) / Holloway, Julianne (Thesis director) / Fumasi, Fallon (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

This thesis creative project involved the planning, preparation, and facilitation of a community-wide event targeting Diabetes Awareness. The event was hosted March 16, 2022, on ASU west campus and includes a PowerPoint presentation of the overall process. It also includes a reflection of successes, challenges, and experience gained from planning

This thesis creative project involved the planning, preparation, and facilitation of a community-wide event targeting Diabetes Awareness. The event was hosted March 16, 2022, on ASU west campus and includes a PowerPoint presentation of the overall process. It also includes a reflection of successes, challenges, and experience gained from planning and facilitation. At the end, there is information analyzing how the event could be improved upon for the future, and a summary of key ideas discussed throughout the project. There is also a paper with the description of the presentation and an embedded link to the recorded presentation of the project during the defense.

ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164604-Thumbnail Image.png
ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164605-Thumbnail Image.png
ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
165750-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’- deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsNguyen, Jasmine (Author) / John, Dona (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2022-05