Matching Items (25)
Filtering by

Clear all filters

Description

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture system, making it inaccessible to non industrial research programs. Complex

Protein and gene circuit level synthetic bioengineering can require years to develop a single target. Phage assisted continuous evolution (PACE) is a powerful new tool for rapidly engineering new genes and proteins, but the method requires an automated cell culture system, making it inaccessible to non industrial research programs. Complex protein functions, like specific binding, require similarly dynamic PACE selection that can be alternatively induced or suppressed, with heat labile chemicals like tetracycline. Selection conditions must be controlled continuously over days, with adjustments made every few minutes. To make PACE experiments accessible to the broader community, we designed dedicated cell culture hardware and integrated optogenetically controlled plasmids. The low cost and open source platform allows a user to conduct PACE with continuous monitoring and precise control of evolution using light.

ContributorsTse, Ashley (Author) / Bartelle, Benjamin (Thesis director) / Tian, Xiaojun (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
166072-Thumbnail Image.png
Description

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms Tillery, et al.) [1]. The previous methods for conducting such

Following a study conducted in 1991 supporting that kinesthetic information affects visual processing information when moving an arm in extrapersonal space, this research aims to suggest utilizing virtual-reality (VR) technology will lead to more accurate and faster data acquisition (Helms Tillery, et al.) [1]. The previous methods for conducting such research used ultrasonic systems of ultrasound emitters and microphones to track distance from the speed of sound. This method made the experimentation process long and spatial data difficult to synthesize. The purpose of this paper is to show the progress I have made in the efforts to capture spatial data using VR technology to enhance the previous research that has been done in the field of neuroscience. The experimental setup was completed using the Oculus Quest 2 VR headset and included hand controllers. The experiment simulation was created using Unity game engine to build a 3D VR world which can be used interactively with the Oculus. The result of this simulation allows the user to interact with a ball in the VR environment without seeing the body of the user. The VR simulation is able to be used in combination with real-time motion capture cameras to capture live spatial data of the user during trials, though spatial data from the VR environment has not been able to be collected.

ContributorsSyed, Anisa (Author) / Helms-Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
131712-Thumbnail Image.png
Description
NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic,

NIPAAm co-DEAEMA hydrogels are a potential solution for sustained, local delivery of ketorolac tromethamine. Current methods of postoperative pain management, such as local anesthetics, NSAIDs, and opioids, can be improved by minimizing side effects while still effectively treating severe and extreme pain. Though high doses of ketorolac can be toxic, sustained, local delivery via hydrogels offers a promising solution. Four ketorolac release studies were conducted using PNDJ hydrogels formulated by Sonoran Biosciences. The first two studies tested a range of JAAm concentration between 1.4 and 2.2 mole percent. Both had high initial release rates lasting less than 7 days and appeared to be unaffected by JAAm content. Tobramycin slowed down the release of ketorolac but was unable to sustain release for more than 6 days. Incorporating DEAEMA prolonged the release of ketorolac for up to 14 days with significant reductions in initial burst release rate. Low LCST of NIPAAM co-DEAEMA polymer is problematic for even drug distribution and future in vivo applications.
ContributorsHui, Nathan (Author) / Vernon, Brent (Thesis director) / Heffernan, John (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132606-Thumbnail Image.png
Description
Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for

Piloerection (known as goosebumps) is mediated by activation of alpha-adrenergic receptors within the sympathetic branch of the autonomic nervous system. The study of piloerection is important in multiple fields, from emotion studies to nervous system pathology. This makes piloerection particularly relevant to emotions research. Despite wide-ranging applications, current methods for measuring piloerection are laborious and qualitative. The goal of this study is to build a wearable piloerection sensor through the use of straight-line lasers and photoresistors. The study analyzed methods of detecting and measuring goosebumps, and applied the method of laser scattering as a detection method. This device was designed and tested against a population of seven Arizona State University students. Goosebumps were elicited through conditions of cold, and video clips meant to elicit emotions of awe and sadness. Piloerection was then quantified through two controls of self-identification and camera recording, as well as the new detection method. These were then compared together, and it was found that subjective methods of determining goosebumps did not correlate well with objective measurements, but that the two objective measurements correlated well with one another. This shows that the technique of laser scattering can be used to detect goosebumps and further developments on this new detection method will be made. Moreover, the presence of uncorrelated subjective measurements further shows the need for an objective measurement of piloerection, while also bringing into question other factors that may be confused with the feeling of piloerection, such as chills or shivers. This study further reaffirmed previous studies showing a positive correlation between intense emotions.
ContributorsHemesath, Angela (Author) / Muthuswamy, Jitendran (Thesis director) / Shiota, Michelle (Lani) (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132400-Thumbnail Image.png
Description
The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I

The Honors Creative Project evolved drastically from start to finish, despite its origin remaining the same. My core goal in this project was to connect two seemingly mutually exclusive aspects of my life, engineering and dance. After conducting an IRB study and using data from my own personal experiences, I was able to see how dance had in fact made me a better engineer. There were skills that I gained and learned in dance that were directly applicable to engineering, and I believe will be critical to my success as an engineer. As the focal point of the project angled towards myself, I had to look deeply into who I am and how I reached this point. I conducted self-reflections on various aspects of my current life and also on the struggles and hardships I overcame during my years at ASU. From these reflections, I learned a lot about myself and how my personal identity has evolved. This identity evolution became the backbone behind my thesis defense. I took my research and self-reflections and designed a series of artwork that I personally designed and painted myself. I my engineering side to conduct the research and collect the data, and then used my artistic side to present my findings to the public in a way that attracted and audience and caused others to reflect upon their own identities.
ContributorsArizmendi, Romann Fuentes (Author) / Olarte, David (Thesis director) / Welz, Matt (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05