Matching Items (2)

Filtering by

Clear all filters

131940-Thumbnail Image.png

Physiological Effects of High Intensity Interval Training on Women with Breast Cancer Undergoing Anthracycline-based Chemotherapy

Description

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are at an increased risk for cardiovascular disease, functional impairments, and loss of cardiorespiratory fitness. These negative outcomes have implications for early morbidity and mortality. The purpose of this thesis was to test the hypothesis that high-intensity exercise preconditioning (exercise commenced prior to initiating chemotherapy and continued throughout treatment cycles) preserves health-related outcomes in breast cancer patients treated with anthracycline-containing chemotherapy. Here, we present a subset of preliminary data from an ongoing trial (NCT02842658) that is focused on VO2peak and skeletal muscle outcomes from the first 10 participants that have enrolled in the trial. Breast cancer patients (N=10; 50 ± 11 y; 168 ± 4 cm; 92 ± 37 kg; 32.3 ± 12.3 kg/m2) scheduled to receive anthracycline-containing chemotherapy were randomly assigned to one of two interventions: 1) exercise preconditioning, (3 days per week of supervised exercise throughout treatment) or 2) standard of care (attention-control). Pre-testing occurred 1-2 week prior to chemotherapy. The interventions were initiated 1 week prior to chemotherapy and continued throughout anthracycline treatment. Post-testing occurred 3-7 days following the last anthracycline treatment. VO2peak (L/min) was reduced by 16% in the control group (P < 0.05), whereas VO2peak was preserved in the exercise preconditioning group. Trends for greater preservation and/or improvement in the exercise preconditioning group were also observed for lean body mass and peak heart rate. Hand grip strength was not changed in either group (P > 0.05). Both groups demonstrated an increase in ultrasound-derived echogenicity measures of the vastus lateralis (P < 0.05), indicating changes in the composition of the skeletal muscle during treatment. These preliminary data highlight that exercise preconditioning may serve as a strategy to preserve cardiorespiratory fitness and perhaps lean mass during anthracycline treatment of breast cancer. There remains a need for larger, definitive clinical trials to identify strategies to prevent the array of chemotherapy-induced toxicities that are observed in breast cancer patients treated with anthracyclines.

Contributors

Agent

Created

Date Created
2020-05

136345-Thumbnail Image.png

DIRECTED ENZYME PRODRUG THERAPY: THE SYNTHESIS OF A Β-GLUCURONIDE LINKER AND ITS COUPLING WITH Z-IODOCOMBSTATIN

Description

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a tumor, as a tumor cannot grow larger than 1-2 mm3 without developing its own blood supply. Vascular disrupting agents, such as iodocombstatin, a derivative of combretastatin, can be used to effectively cut off the blood supply to a growing neoplasm, effectively inhibiting the supply of oxygen and nutrients needed for cell division Thus, VDAs have a very important implication in terms of the future of chemotherapy. A prodrug, defined as an agent that is inactive in the body until metabolized to yield the drug itself, was synthesized by combining iodocombstatin with a β-glucuronide linker. The prodrug is theoretically hydrolyzed in the body to afford the active drug by β-glucuronidase, an enzyme that is produced five times as much by cancer cells as by normal cells. This effectively creates a “magic-bullet” form of chemotherapy, known as Direct Enzyme Prodrug Therapy (DEPT).

Contributors

Agent

Created

Date Created
2015-05